Part	NOTE: Photocopy this page before		ave more	than 26 w	astes to list				***	•
MMILID 9 8 0 3 6 8 71 1 MW			' / '	1 31		R OFFICI	AL USE			1 1 1 1 1 1
		7111.	//	W		OUP		2		
	1 1					($g_{i}^{\mu} \mathcal{L}_{i}^{\mu} \mathcal{L}_{i}^{\mu}$	
1	U HAZARO. B. ESTIMA: /ASTENO QUANTIT	Y OF WASTE	sure (enter code)		(ent	er)	-			SS DESCRIPTION not entered in $D(1)$)
2	1 P/2/1 1,0				27 - 3	17 - 19	37 - 39			
3	2 P 1 2 2 1,0	00	T	D 8 0		[]	1 ,			-
4	- 3 P / 2 3 1,0	00	$ \mathbf{T} $	D 8 0					7 2	
S U O O Z 1,000	4 0001 1,0	00	T	D 8 0				-		
6 U O O S 1,000	5 0002 1,0	000	T	D 8 0		1	r r			
7	6 0003 1,0	00	T	D 8 0			, . ,			
S	7 4004 1,0	000	$ \mathbf{T} $	D 8 0						
9 U 0 0 6 1,000	8 11005 1,0	000	T	1						
10	9 0006 1,0	000	$ _{\mathtt{T}} $				1 1			
11	10 0007 1,0	000	T	D 8 0	1 1				.*	
12 U O O O O O O O O O	11 0008 1,0	000	T	1						
13 U O I O 1,000 T D S O O O 14 U O I I 1,000 T D S O O O 15 U O I Z 1,000 T D S O O O 16 U O I Z 1,000 T D S O O O 17 U O I S 1,000 T D S O O O 18 U O I F I,000 T D S O O O 19 U O I T I,000 T D S O O O 20 U O I S I,000 T D S O O O 21 U O I F I,000 T D S O O O 22 U O Z O I,000 T D S O O O 23 U O Z I I,000 T D S O O O 24 U O Z I I,000 T D S O O O 25 U O Z Z I,000 T D S O O O 26 U O Z Z I,000 T D S O O O 27 D S O D D S O O O 28 U O Z Z I,000 T D S O O O 29 U O Z Z I,000 T D S O O O 20 U O Z Z I,000 T D S O O O 21 D D D D D D D D D	12 00 0 9 1,0	000	Т	<u> </u>			r r			•
15 U O I I 1,000 T D 8 0 16 U O I A 1,000 T D 8 0 17 U O I 5 1,000 T D 8 0 18 U O I 6 1,000 T D 8 0 19 U O I 7 1,000 T D 8 0 20 U O I 8 1,000 T D 8 0 21 U O I 9 1,000 T D 8 0 22 U O I 9 1,000 T D 8 0 23 U O I 1,000 T D 8 0 24 O I I 1,000 T D 8 0 25 U O I I 1,000 T D 8 0 26 U O I I 1,000 T D 8 0 27 D 8 0 28 U O I I 1,000 T D 8 0 29 U O I I 1,000 T D 8 0 20 U O I I 1,000 T D 8 0 20 U O I I 1,000 T D 8 0 21 U O I I 1,000 T D 8 0 22 U O I I 1,000 T D 8 0 24 O I I 1,000 T D 8 0 25 U O I I 1,000 T D 8 0 26 U O I I 1,000 T D 8 0	13 00/0 1,0	000	T	, ,			1			
15 U O I 2 1,000 T D 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 0011 1,0	000	T				l'i			
16 U O I A 1,000 T D 8 0 17 U O I 5 1,000 T D 8 0 18 U O I 6 1,000 T D 8 0 20 U O I 8 1,000 T D 8 0 21 U O I 9 1,000 T D 8 0 22 U O 2 O 1,000 T D 8 0 23 U O 2 I 1,000 T D 8 0 24 O 2 Z 1,000 T D 8 0 25 U O 2 Z 1,000 T D 8 0 26 U O 2 A 1,000 T D 8 0 27 D 8 0 28 O O O O O O O O O O O O O O O O O O O	15 UO12 1,0	000	T	1 1						
17 U 0 I 5 1,000 T D 8 0 19 U 0 I 7 1,000 T D 8 0 20 U 0 I 8 1,000 T D 8 0 21 U 0 I 9 1,000 T D 8 0 22 U 0 2 0 1,000 T D 8 0 23 U 0 2 I 1,000 T D 8 0 24 U 0 2 2 1,000 T D 8 0 25 U 0 2 3 1,000 T D 8 0 26 U 0 2 4 1,000 T D 8 0 26 U 0 2 4 1,000 T D 8 0 27 D 8 0 28 D 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 0014 1,0	000	Т	<u> </u>						
18 U 0 I 6 1,000 T D 8 0 T D 8	17 0 0 1 5 1,0	000	Т	D 8 G		, ,				
19 U 0 1 7 1,000 T D 8 0	18 U 0 1 6 1,0	000 .	T	D 8 O						
20 U 0 / 8	19 0 1 7 1,0	000	T	08 C						
21 U 0 1 9 1,000 T D 8 0	20 U 0 / 8 1,0	000	T	D 8 O				-		•
22 U 0 2 0 1,000 T D 8 0	21 U 0 1 9 1,0	000	T	D 8 O	1 1			•		
23 U 0 2 1 1,000 T D 8 0 24 1 0 2 2 1,000 T D 8 0 25 U 0 2 3 1,000 T D 8 0 26 U 0 2 4 1,000 T D 8 0 27 D 8 0 28 D 8 0 T D 8 0	22 0 0 2 0 1,0	000	T	D 8 G				•		•
26 U 0 2 4 1,000 T D 8 0 26 U 0 2 4 1,000 T D 8 0 27 D 8 0 28 D 8 0 D 8 0	23 0 0 2 1 1,0	000	Т	D 8 0						
25 U 0 2 3 1,000 T D 8 0 T D 8	24 1022 1,0	000	Т							-
26 <u>UUZ</u> 1,000 T D 8 0 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	25 0 0 2 3 1,0	000	T	D 8 O						
	<u> </u>		Ţ.	D 8 0	27 - 29	17 - 29	27 - 28			

45 Τ D 8 O 1,000 Т D 8 O 1,000 0 T D 8 0 8 1,000 23 U۱٥ 4 D 8 0 1,000 4 2 D 8 O T 1,000 Т D 8 O 1,000 8 0 CONTINUE ON REVERSE PAGE 3 ... OF 5

			at a second
•			
			f

Continued from page 2. NOTE: Photocopy this page before completing if you have more than 26 wastes to list. FOR OFFICIAL USE ONLY EFA I.D. NUMBER (enter from page 1) WMI w D|9|8|0 5 6 DUP 8 IV. DESCRIPTION OF HAZARDOUS WASTES (continued) D. PROCESSES C. UNIT OFMEA-SURE B. ESTIMATED ANNUAL QUANTITY OF WASTE HAZARD. 2. PROCESS DESCRIPTION (if a code is not entered in D(1)) 1. PROCESS CODES (enter) ASTENO (enter enter code) 1,000 10 52 Т D 8 5 0 3 1,000 Т D 8 0 3 5 1,000 Τ D80 5 0 1,000 T D 8 0 5 1,000 Т D 8 0 1,000 Τ D 8 0 7 1,000 5 Т D 8 O 6 1,000 0 D 8 0 1,000 9 6 D 8 0 1,000 10 T D 8 0 1,000 11 D 8 0 T 1,000 D 8 O 12 1,000 T D 8 0 13 6 6 1,000 Τ D 8 0 8 15 1,000 0 6 Т D 8 O 1,000 16 Т D 8 O 1,000 17 Τ D 8 O 1,000 18 T D 8 O 1,000 19 Т D 8 O 1,000 20 D 8 O 1,000 21 D 8 O 1,000 22 D 8 0 1,000 D 8 O 1,000 20 D 8 0 Т 1,000 25 8 0 26 1,000 CONTINUE ON REVERSE

	***		••	
**				
		•		

Continued from page 2. NOTE: Photocopy this page before completing if you	have more	than 26 wastes to list.	, .
EPA LD. NUMBER (enter from page 1)		FOR OFFICIAL USE O	NLY TIME
WMID980568711 1	,	W DUP	2 DUP
IV. DESCRIPTION OF HAZARDOUS WAST	T		
HAZARD. B. ESTIMATED ANNUAL Z 'ASTENO QUANTITY OF WASTE L (enter code)	C. UNIT OF MEA SURE (enter code)	1. PROCESS CODES (enter)	Z. PROCESS DESCRIPTION (if a code is not entered in D(1))
1 0 8 0 1,000		D. 8. 0	
2 40811 1,000	T	D 8 0	
3 4 9 2 1,000	Т	D 8 0	·
4 0083 1,000	T	D 8 0	
5 4 1,000	T	D 8 0	
6 0085 1,000	$ $ $ $ $ $	D 8 0	
7 4086 1,000	T	D 8 0	
8 40 8 7 1,000	T	D 8 0	
9 0088 1,000	T	D 8 0	
10 0 8 9 1,000	T	D 8 0	.*
11 0 9 0 1,000	T	D 8 0	
12 0 9 1 1,000	Т	D 8 0	
13 0 9 2 1,000	Т	D 8 0	***
14 0 9 3 1,000	Т	D 8 0	
15 0 9 4 1,000	T	D 8 0	•
16 0 9 5 1,000	T	D 8 O	
17 0 9 6 1,000	T	D 8 0	
13 0 9 7 1,000	T	D 8 0	
19 0 9 8 1,000	$ \mathbf{T} $	D 8 0	
20 0 9 9 1,000	T	D 8 0	
21 0 1,000	T	D 8 0	•
22 0 1 0 2 1,000	T	D 8 0	
23 U I O 3 1,000	T	D 8 0	
20 1 0 5 1,000	T	D 8 0	
25 1 0 6 1,000	T	D 8 0	
26 1 0 7 1,000	Ţ	D 8 0	CONTINUE ON PEVEDOR

	*		.
			· ·
			Your thousand
			:
			7
			-
			12

*	*	•	S.
			:
·			
			*
			,
			·

NOTE: Photocopy th	his page before completing if you	have more	than 26 wastes to list	
137 1 7 7	BER (enter from page 1)	///	FOR OFFICIAL	L USE ONLY
WMID98	056871111	. \ \	W DUP	2 DUP
	ON OF HAZARDOUS WAST			なながった。これでは、日本のは、日本のは、日本のは、日本のは、日本のは、日本のは、日本のは、日本の
A. EPA HAZARD. WASTENO (enter code)		C.UNIT OFMEA- SURE (enter code)	1. PROCESS CODES (enter)	D. PROCESSES 2. PROCESS DESCRIPTION (if a code is not entered in D(1))
1 1134	1,000	''	D 8 0	- 39
2 11 3 5	1,000	T	D 8 0	
· 3 U136	1,000	T	D 8 0	
4 1137	1,000	т	D 8 0	
⁵ U138	1,000	T	D 8 0	
6 U 1 4 0	1,000	T	D 8 0	
7 1141	1,000	T	D 8 0	
8 4 2	1,000	T	D 8 0	
9 U143	1,000	T	D 8 0	
10 1144	1,000	T	D 8 0	
11 11 1 4 5	1,000	T	D 8 0	
12 11 46	1,000	Т	D 8 0	
¹³ U 1 4 7	1,000	Т	D80	
14 11 1 4 8	1,000	T	D80	
15 4 9	1,000	Т	D 8 0	·
16 11 50	1,000	Т	D 8 O	
17 U I 5 I	1,000	Т	080	
18 Ц 1 5 2	1,000	Т	D 8 0	
19 1 5 3	1,000	т	D80	
20 U 1 5 4	1,000	T	D 8 0	
21 1 1 5 5	1,000	T	D80	•
22 11 5 6	1,000	Т	D80	
²³ U I 5 7	1,000	T	D80	
2 1 1 5 8	1,000	T	D 8 O	
25 U I 5 9	1,000	T	D 8 0	
26 1160	1,000	77	D 8 0	- 13
	· ·			CONTINUE ON REVERSE

•	No.		**.		`
				÷	
					<i>:</i>
·					
					1
		•			
	•				

•	**.	• •	**************************************
			2
			6
			e de la companya de l
			· ·
		-	
			3 - 1 2

Continued from page 2. NOTE: Photocopy this page before completing if you have more than 26 wastes to list. EFA I.D. NUMBER (enter from page 1) FOR OFFICIAL USE ONLY WMID9 80568 W DUP 2 DUP IV. DESCRIPTION OF HAZARDOUS WASTES (continued) C. UNIT
OF MEASURE
(INTER
code) D. PROCESSES B. ESTIMATED ANNUAL QUANTITY OF WASTE HAZARD. WASTENO 1. PROCESS CODES (enter) Z. PROCESS DESCRIPTION (if a code is not entered in D(I)) (enter code) 120 29 (27 29 | 27 88 1,000 1 2 8 C 1,000 T D 8 0 3 9 1,000 T D 8 0 4 9 1,000 Τ D 8 0 5 1,000 9 Т D 8 0 6 9 1,000 T D 8 O 7 94 1,000 \mathbf{T} D 8 O 8 9 1,000 T D 8 O 9 9 1,000 \mathbf{T} D 8 0 10 1,000 0 D80 1,000 11 0 D 8 O 12 0 1,000 T D 8 O 1,000 13 T D 8 0 0 14 1,000 $_{\mathrm{T}}$ D 8 0 15 1,000 0 T D 8 0 1,000 16 0 6 \mathbf{T} D 8 0 17 1,000 Τ D 8 O 1,000 18 0 \mathbf{T} D 8 O 1,000 19 0 9 D 8 O 1,000 20 Т D 8 O 1,000 21 2 T D 8 O 1,000 22 T D 8 O 1,000 23 D 8 0 2 1,000 D 8 O 25 1,000 D 8 O Т 2 26 1,000 8

*,		**.		. .		•
						x
						V
						7
				· ·		
•						
		•				
						:
	•					
					4	
						•
						:
						•
						100
		4				
			•			
	•					

NOTE: Phatocopy th	is page before completing if you	have mor	re than 26 w	astes to lise			• •
	EFA I.D. NUMBER (enter from page 1) FOR OFFICIAL USE ONLY						
WMID98	0568711		W .	DUP		2 DUP	
	N OF HAZARDOUS WASTI						REDUCKION PROPERTY.
A. EPA HAZARD. WASTENO (enter code)	B. ESTIMATED ANNUAL QUANTITY OF WASTE	C.UNI	1	1. PROCESS COD (enter)	ES	D. PROCESSES 2. PROCE fil a code is	ISS DESCRIPTION not entered in D(1))
1 4218	1,000		D 8 0	1 1 0 1	9 1 27 - 29		
2 1 2 1 9	1,000	T	D 8 0				
3 11220	1,000	T	D 8 0	<u>! </u>			
4 U221	1,000	Т	D 8 0	1 6 8 1			
5 10 2 2 2	1,000	T	D 8 0				
6 112 23	1,000	T	D 8 0				
7 4225	1,000	T	D80				
8 112 26	1,000	T	D80				
9 11 2 2 7	1,000	T	D 8 0				
10 11 2 2 8	1,000	T	D 8 0			.*	
11 11 2 3 4	1,000	$ _{ m T} $	D 8 O				
12 Ц 2 3 5	1,000	Т	D 8 O				-
13 U 2 3 6	1,000	T	D 8 O				
14 U 2 3 7	1,000	Т	D 8 O		1 6		
15 Ц238	1,000	Т	D80		' '		
16 U 2 3 9	1,000	Т	D 8 0				
17 12 4 0	1,000	Т	D80				
18 11 2 4 3	1,000	T	D 8 0				
19 11 2 4 4	1,000	T	D80				
20 Ц 2 4 6	1,000	T	D80		1 1		-
21 11 2 4 7	1,000	T	D 8 O			•	
22 11 2 4 8	1,000	т	D 8 0			•	•
23 Ц 2 4 9	1,000	T	D 8 0				
20 1328	1,000	T	D 8 0				
25 11 3 5 3	1,000	T	D 8 0				
26 山 3 5 9	1,000	Ţ	D 8 O	27 - 29 27 - 29	17 - 29	yeg cor o to the	
	· ·		-			, , , , , , , , , , , , , , , , , , ,	CONTINUE ON REVERSE

*	
	: !

PAGE 3 .19 OF 5

D 8 O

D 8 O

D 8 O

D 8 0

D 8 0

8

T

T

 ${f T}$

 \mathbf{T}

3

4

8

22

23

2

25

26

1,000

1,000

1,000

1,000

1,000

8.0	S	Section 1
		No.
		· ·
		· ·
		÷
		·
		*
		:

		•		
·				
	•			

WMID980568711 V DUP 2 DUP IV. DESCRIPTION OF HAZARDOUS WASTES (continued) A. EPA HAZARD. B. ESTIMATED ANNUAL SURE NASTENO QUANTITY OF WASTE (CONTINUED) I. PROCESS CODES 2. PROCESS CESCRIPTION	
WM I D 9 8 0 5 6 8 7 1 1 1 W DUP IV. DESCRIPTION OF HAZARDOUS WASTES (continued) A. EPA HAZARD. B. ESTIMATED ANNUAL SURE SURE SURE	
IV. DESCRIPTION OF HAZARDOUS WASTES (continued) A. EPA HAZARD. B. ESTIMATED ANNUAL WASTENO GUANTITY OF WASTE SURE	
HAZARD. B. ESTIMATED ANNUAL OF MEA-	
12 (enter code) (enter) (if a code is not entered in Di	N (1))
1 0 5 6 U 1,000 T D 8 0	
2 0 5 7 U 1,000 T D 8 0	
3 0 5 8 U 1,000 T D 8 0	
4 0 5 9 U 1,000 T D 8 0	
5 0 6 1 U 1,000 T D 8 0	
6 0 6 3 U 1,000 T D 8 O	
7 0 6 4 U 1,000 T D 8 0	
8 0 6 5 U 1,000 T D 8 O	
9 0 6 8 U 1,000 T D 8 O	
10 07 0 U 1,000 T D 8 0	
11 0 7 1 U 1,000 T D 8 0	
12 0 7 2 U 1,000 T D 8 0	
13 0 7 3 U 1,000 T D 8 0	
14 0 7 4 LJ 1,000 T D 8 0	
15 0 7 5 U 1,000 T D 8 0	
16 0 7 6 U 1,000 T D 8 0	
17 0 7 7 LJ 1,000 T D 8 0	
18 0 7 8 U 1,000 T D 8 0	
19 0 7 9 U 1,000 T D 8 0	
20 0 8 0 U 1,000 T D 8 0	
21 1 5 Z U 1,000 T D 8 O	
22 0 8 2 U 1,000 T D 8 0	•
23 0 8 3 LJ 1,000 T D 8 0	
2 786 D 1,000 T D 8 0 .	
25 0 8 8 U 1,000 T D 8 0	
26 089 U 1,000 T D 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ON REVERSE

	•	.	$\mathcal{P} \stackrel{\mathcal{P}}{\longleftarrow} \mathcal{P}^{\mathcal{P}}_{\mathcal{P}}$
			er en Noge

22 1,000 D 8 O 1,000 23 6 Т D 8 O 1,000 |TD80 1,000 25 g Τ D 8 O 26 1,000 8 CONTINUE ON REVERSE PAGE 3 .22 OF 5
etc. behind the "3" to identify photocopied

	• • •	*	***	
				•
				**
1				
ı				
				4
	•			

5 411 Τ D 8 O 1,000 19 Τ D 8 O 41 211 1,000 20 Τ D 8 O 21 3 L 1,000 4 Τ D 8 0 1,000 22 414 Т D 8 O 1,000 23 5 Τ D 8 C 46 1,000 2 Τ D 8 O 1,000 25 8 0 Т 26 1,000 8 CONTINUE ON REVERSE PAGE 3 23 OF 5 (enter "A", "B", "C", etc. behind the "3" to identify photocopied

···		**,		
				and the second s
·				
	÷			
				•
				No.
			·	
	•			
			•	

IV. DESCRIPTION OF HAZARDOUS WASTES (continued)	
E. USE THIS SPACE TO LIST ADDITIONAL PROCESS CODES FE	ROM ITEM D(1) ON PAGE 3.
NONE	
·	
·	
EPA I.D. NO. (enter from page 1)	
FMID980568711	
V. FACILITY DRAWING	
All existing facilities must include in the space provided on page 5 a scale drawin VI. PHOTOGRAPHS	g of the facility (see instructions for more detail).
All existing facilities must include photographs (aerial or ground—level treatment and disposal areas; and sites of future storage, treatment or	// that clearly delineate all existing structures; existing startes
	disposal areas (see instructions for more detail)
VII. FACILITY GEOGRAPHIC LOCATION	
VII. FACILITY GEOGRAPHIC LOCATION LATITUDE (degrees, minutes, & seconds)	
MITAGETTI GEOGRAPHIC LUCATION	LONGITUDE (degrees, minutes, & seconds) 0831221W
LATITUDE (degrees, minutes, & seconds)	
VIII. GENERAL INFORMATION	LONGITUDE (degrees, minutes, & seconds) 0 8 3 1 2 2 1 W 12 - 72 72 75 77 - 79
VIII. GENERAL INFORMATION Attach each of the following as separate attach. General facility description. 6. Continger	LONGITUDE (degrees, minutes, & seconds) 083 12 21 W 12 72 73 77 79 achments to the application:
VIII. GENERAL INFORMATION Attach each of the following as separate attach. General facility description 6. Continger 2. Chemical & physical analysis 7. Preparedr	LONGITUDE (degrees, minutes, & seconds) 083 12 21 W achments to the application: ncy plan 11. Closure/post-closure plans ness/prevention 12. Cost estimates
VIII. GENERAL INFORMATION Attach each of the following as separate attaches: 1. General facility description 6. Continger 2. Chemical & physical analysis 7. Preparedr 3. Waste analysis plan 8. Traffic i 4. Security procedures 9. Location	achments to the application: 11. Closure/post-closure plans ness/prevention 12. Cost estimates information 14. Financial assurance
VIII. GENERAL INFORMATION Attach each of the following as separate attal. General facility description 6. Continger 2. Chemical & physical analysis 7. Preparedr 3. Waste analysis plan 8. Traffic in	achments to the application: 11. Closure/post-closure plans ness/prevention 12. Cost estimates information 14. Financial assurance
VIII. GENERAL INFORMATION Attach each of the following as separate attaches: 1. General facility description 6. Continger 2. Chemical & physical analysis 7. Preparedr 3. Waste analysis plan 8. Traffic i 4. Security procedures 9. Location	LONGITUDE (degrees, minutes, & seconds) O 8 3 1 2 2 1 W achments to the application: ncy plan
VIII. GENERAL INFORMATION Attach each of the following as separate attall. General facility description 6. Continger 2. Chemical & physical analysis 7. Preparedr 3. Waste analysis plan 8. Traffic i 4. Security procedures 9. Location 5. Inspection schedule 10. Training	LONGITUDE (degrees, minutes, & seconds) O 8 3 1 2 2 1 W achments to the application: ncy plan
VIII. GENERAL INFORMATION Attach each of the following as separate attall. General facility description 6. Continger 2. Chemical & physical analysis 7. Preparedr 3. Waste analysis plan 8. Traffic i 4. Security procedures 9. Location 5. Inspection schedule 10. Training	LONGITUDE (degrees, minutes, & seconds) O 8 3 1 2 2 1 W achments to the application: ncy plan
VIII. GENERAL INFORMATION Attach each of the following as separate attached the follo	LONGITUDE (degrees, minutes, & seconds) O 8 3 12 2 1 W achments to the application: ncy plan
VIII. GENERAL INFORMATION Attach each of the following as separate attall. General facility description 6. Continger 2. Chemical & physical analysis 7. Preparedr 3. Waste analysis plan 8. Traffic i 4. Security procedures 9. Location 5. Inspection schedule 10. Training IX. SUPPLEMENTAL INFORMATION Attach for all applications: Attall. Hydrogeological report 1. F 2. Environmental assessment 2. Compared to the following as separate attall.	LONGITUDE (degrees, minutes, & seconds) O 8 3 1 2 2 1 W achments to the application: ncy plan
VIII. GENERAL INFORMATION Attach each of the following as separate attall. General facility description 6. Continger 2. Chemical & physical analysis 7. Preparedr 3. Waste analysis plan 8. Traffic in 4. Security procedures 9. Location 5. Inspection schedule 10. Training IX. SUPPLEMENTAL INFORMATION Attach for all applications: Attach for all applications: Attach for all applications: 1. Hydrogeological report 1. F 2. Environmental assessment 2. C 3. Environmental monitoring program 3. P	LONGITUDE (degrees, minutes, & seconds) 0 8 3 1 2 2 1 W
VIII. GENERAL INFORMATION Attach each of the following as separate attached the follo	LONGITUDE (degrees, minutes, & seconds) O 8 3 1 2 2 1 W achments to the application: ncy plan
VIII. GENERAL INFORMATION Attach each of the following as separate attached the follo	LONGITUDE (degrees, minutes, & seconds) 0 8 3 1 2 2 1 W 1
VIII. GENERAL INFORMATION Attach each of the following as separate attal. General facility description 6. Continger 2. Chemical & physical analysis 7. Preparedr 3. Waste analysis plan 8. Traffic i 4. Security procedures 9. Location 5. Inspection schedule 10. Training IX. SUPPLEMENTAL INFORMATION Attach for all applications: Attal 1. Hydrogeological report 1. F 2. Environmental assessment 2. C 3. Environmental monitoring program 4. Engineering plans 4. R X. FACILITY SPECIFIC INFORMATION Attach the required technical information	Achments to the application: achments to the application in 12. Cost estimates achments to the application in 13. Liability mechanism and information in 14. Financial assurance ach for operating license applications only: achments to the application: achments to the applica
VIII. GENERAL INFORMATION Attach each of the following as separate attal. General facility description 6. Continger 2. Chemical & physical analysis 7. Preparedr 3. Waste analysis plan 8. Traffic id 4. Security procedures 9. Location 5. Inspection schedule 10. Training IX. SUPPLEMENTAL INFORMATION Attach for all applications: Attal 1. Hydrogeological report 1. F 2. Environmental assessment 2. C 3. Environmental monitoring program 4. Engineering plans 4. R X. FACILITY SPECIFIC INFORMATION Attach the required technical information 1. Containers 2. Tanks	LONGITUDE (degrees, minutes, & seconds) 083 12 2 1 W
VIII. GENERAL INFORMATION Attach each of the following as separate attal. General facility description 6. Continger 2. Chemical & physical analysis 7. Preparedr 3. Waste analysis plan 8. Traffic i 4. Security procedures 9. Location 5. Inspection schedule 10. Training IX. SUPPLEMENTAL INFORMATION Attach for all applications: Attal 1. Hydrogeological report 1. F 2. Environmental assessment 2. C 3. Environmental monitoring program 4. Engineering plans 4. R X. FACILITY SPECIFIC INFORMATION Attach the required technical information 1. Containers	Achments to the application: achments to the application in 12. Cost estimates achments to the application in 13. Liability mechanism and information in 14. Financial assurance ach for operating license applications only: achments to the application: achments to the applica

*			
			(
			* .

FUTURE LANDFILL AZEA 2520 FEET 1530 FEET 1530 FEET NON-HAZARDOUS LANDFILL ACTIVE AZEA 7/ A. 7/ A. 88 SCALE: 14 THICH = 400 FEET 1270 FEET 1270 FEET HAZARDOUS LANDFILL ACTIVE AZEA 2.7 A. 1400 FEET 1400 FEET	V. 1	ACII	LITY DRAWING (see page 4)	Ţ
TOTORE LANDFILL AREA 2520 FEET 1530 FEET 1540 FEET		1	· · · · · · · · · · · · · · · · · · ·	- \$100 -
2520 FEET 1530 FEET 1530 FEET 1530 FEET 154 HARARDOUS LANDFILL ACTIVE AREA 2.7 A. 7/ A. PAST LANDFILL AREA 20 PAST LANDFILL AREA			GATE GATE	
2520 FEET 1530 FEET 1530 FEET 1530 FEET 154 HARARDOUS LANDFILL ACTIVE AREA 2.7 A. 7/ A. PAST LANDFILL AREA 20 PAST LANDFILL AREA)		.
2520 FEET 1530 FEET 1530 FEET 1530 FEET 154 HARARDOUS LANDFILL ACTIVE AREA 2.7 A. 7/ A. PAST LANDFILL AREA 20 PAST LANDFILL AREA	,1			
2520 FEET 1530 FEET 1530 FEET 1530 FEET 154 HARARDOUS LANDFILL ACTIVE AREA 2.7 A. 7/ A. PAST LANDFILL AREA 20 PAST LANDFILL AREA			FUTURE LANDFILL AREA	
153c FET 153c FET WIND-HAZARDOUS LANDFILL ACTIVE AREA 7/ A. By PAST LANDFILL AREA 9 9 9 9 9 9 9 9 9 9 9 9 9			20.	
153c FET 153c FET WIND-HAZARDOUS LANDFILL ACTIVE AREA 7/ A. By PAST LANDFILL AREA 9 9 9 9 9 9 9 9 9 9 9 9 9				
153c FEET By HAZARDOUS LANDFILL OF ACTIVE AREA 7/A. PAST LANDFILL AREA OF PAST LANDFILL AREA OF PAST LANDFILL AREA			2520 FEET	
153c FEET By HAZARDOUS LANDFILL OF ACTIVE AREA 7/A. PAST LANDFILL AREA OF PAST LANDFILL AREA OF PAST LANDFILL AREA	1.	1.		
153c FEET By HAZARDOUS LANDFILL OF ACTIVE AREA 7/A. PAST LANDFILL AREA OF PAST LANDFILL AREA OF PAST LANDFILL AREA				1
153c FEET By HAZARDOUS LANDFILL OF ACTIVE AREA 7/A. PAST LANDFILL AREA OF PAST LANDFILL AREA OF PAST LANDFILL AREA				
153c FEET By HAZARDOUS LANDFILL OF ACTIVE AREA 7/A. PAST LANDFILL AREA OF PAST LANDFILL AREA OF PAST LANDFILL AREA				X
Non-Hazardous Lanofill Active Area 7/ A. Past Lanofill AREA 27 A. Past Lanofill AREA 29 Past Lanofill AREA			127c FET	
Non-HAZARDEUS LANOFILL ACTIVE AREA 71 A. PAST LANOFILL AREA OB OB OB OB OB OB OB OB OB O			153c FEET	
ACTIVE AREA 7/A. PAST LANDFILL BY AREA 06				 ¥
PAST LANDFILL AREA		1	NON-RAZINEDUS LANDFILL	
PAST LANDFILL AREA 900			ACTIVE AREA	
PAST LANDFILL AREA 900	-32			
PAST LANDFILL AREA OB			7/A.	
PAST LANDFILL AREA 90 90	0			
PAST LANDFILL AREA 90 90	38.5		\$ 30A.	
AREA Idoo LEE				
AREA Idoo LEE	!	•		
AREA Idoo LEE				
doo FE			•!	
0006)		•	AREA	
	i: ∭			
SCALE: 1 INCH = 400 FEET BCUNDARY	-		5	[
SCALE: 1 INCH = 400 FEET BCUNDARY				
SCALE: 1 INCH = 400 FEET BOLINDARY	Į	٠.		1016001
SCALE: 1 INCH = 400 FEET BCLINDARY		· (
SCALE: 1 INCH = 400 FEET BCLWPARY			PERT. 1400 FEET	
SCALE: 1 INCH = 400 FEET BCLWPARY			METER TO	
1 INCH = 400 FEET BOLW PARY		· · ·	TENCE AND	
BCUNDARY BCUNDARY			TIGHT - ACC FORT	
I WPARY		1	INCH - TWO ICE I	_
			PARY	

**.	<u>~</u>		
			$N = \sum_{j \in \mathcal{I}_{i}} \sum_{j \in \mathcal{I}_{i}} \mathcal{I}_{i,j}$
			,
			•

*	40				•	Notice Control of the
			÷			
					•	·
				•		
		ν				

- (3) The petition should include a copy of the air monitoring plan and the surface water drainage and sediment monitoring plan that will be implemented under the RCRA permit. These should include the background values that the monitoring results will be compared to. Also, the submittals should indicate what actions will be taken if background values are exceeded.
- The petition should address in detail the elements of design and operation that will eliminate migration of hazardous constituents into air and surface water. Because the no-migration standard must also be met after post-closure, the discussion should also give consideration to worst-case events after the post-closure period that could expose hazardous constituents to the environment. For example, what elements of design and operation will ensure that long-term erosion of the final cover will not expose fine particulate waste to wind dispersal and precipitation runoff? would prevent leachate accumulation from entering surface water drains after post-closure, assuming failure of the cover system? Some aspects of long-term prediction of landfill performance may be addressed through model simulation.
- (5) The petition should include a description of the final cover construction, and maintenance practices during post-closure.
- (6) The petition should include a discussion of potential future land-use changes, and changes to ground-water pumping locations and rates, that could result in a modification to the hydrologic regime beneath the facility. The long-term effect of such changes on the upward vertical hydraulic gradient may be addressed through model simulation.

•	N.	* t	· · ·
•			
•			
	•	•	

(7) The petition should address potential meteorological and climatic changes that could affect wear of the cap or leachability of the waste. The discussion should also address any solubilizing effect of acid rain.

A quality assurance/quality control plan should accompany any sampling, analysis, or modelling work undertaken in response to the suggestions made in this letter.

It should be remembered that no migration of hazardous constituents "for as long as the waste remains hazardous" is a very stringent standard. This is particularly true for toxic metal constituents which will remain toxic indefinitely. In order for EPA to consider granting a waiver pursuant to 40 CFR 268.6, your petition must provide an extensive demonstration that Cell #2 will meet the no-migration standard.

If we may be of further assistance, please call Amy Mills of my staff at (202) 382-4422.

Sincerely,

Elizabeth Cotsworth, Acting Chief

Assistance Branch

cc: Amy Mills
Carol Witt, Region V
Ken Burda, MDNR

	**.	**		**,
		•		
				$J_{\mu}=4$
				•
		•		
•		est en		. '
			•	

Date: FEB 1 1 1988

MEMORANDUM

Subject: Ford Allen Park Clay Mine Land Ban No-Migration Petition

MID 980 568 711

From: Carol Witt, Geologist

Region V, RPB, Michigan Section

To: Amy Mills, Geologist

Headquarters, Assistance Branch

This memo is in response to your February 4, 1988 request for further file information on the above referenced facility. Following identifies the items which you requested, and the availability of the data.

1. Waste Analysis plan for all wastes to be placed in Master Cell 2.

Attachment I is the Waste Analysis plan that will be incorporated into the draft permit. Also enclosed is a draft of conditions set under the Federal permit. Please be aware that the Michigan Department of Natural Resources (MDNR) is authorized to approve the plan, except for Land Ban conditions. The MDNR may also have some modifications to the draft permit copy under Michigan Act 64 (MI Act 64). Mr. Pete Quackenbush of the MDNR, is the permit writer assigned to this site. Pete can be reached at (517) 373-2730, for further assistance.

Information concerning any past compliance problems with environmental significance.

I have searched through the Federal compliance records. The only issue of some environmental significance occurred in 1986, when leachate levels in Cell 1 were in exceedance of the required six inches. The leachate was pumped out and the facility was brought back into compliance. There is no minimum technology type of leachate collection system in Cell 1. Mr. Larry AuBuchon of the MDNR district office, is the inspector for this site. He may be reached at (313) 459-9180, for further compliance assistance.

OF PERSONAL	**************************************	gamented decidencies	- Commerce of the Lot	NAMES OF GROOM	personales	STEEN OF THE SECURITY OF THE S	rine-stem reports to a	LYNERAL PROPERTY 25	Section and the second	LEZHER OTT NATE	7
	TYP.	AUTH.	CHIEF	CHIEF	Mi. CHEF	MM/WI CHIEF	OH. CHIEF	TPS CallEF	WMB CHIEF	WMD	\$ 14 M
DATE	e de la companya de l	organistic control of the control of		1			The second second				7
Section of States	THE WATER STREET	Intermediate to	WE THE WALL THE T	ca disalir visul tome no to vide	- Proposition of the last of the	of the state of the state of the	AND ADDRESS OF THE PARTY OF THE				

3. A summary of interim status monitoring from the Part B.

Attachment II provides you with all the interim status monitoring data from the Part A, this data includes the same information that is in the Part B, plus correspondence letters. I could not find an approval letter for the 265 monitoring waiver. There are no records in our enforcement files that a CME was completed for this site. The ground water certification was submitted, if you need a copy please let me know.

4. The approved ground water monitoring system in the draft permit.

The MDNR is currently writing the conditions for the draft permit. The State is authorized for this portion of the program. We do not have a copy of their conditions yet. Please contact Mr. Terry McNeil of the MDNR, the geologist for this, at (517) 373-2730 for further assistance.

5. Information on landfill liner materials and installation procedures.

Attachment III provides the Construction QA/QC Plan for Master Cell II. Ford has decided to create subcells in the main cell, so the final engineering plans are changing. As soon as I finish the draft permit conditions in the next two weeks, I will send you the complete design package.

6. Field data verifying artesian conditions in the underlying strata.

I have no data in the files besides the Part B and Part A information I am sending you. The MDNR may have data in their files. Either Pete or Terry would be able to help you on that. Ford may have some data that our files don't include. You may want to contact them to have it ready when you visit the site.

7. Information on surface drainage from the facility.

Steel, and Corrective Correction from the Part B. These items should help you in identifying resharays.

8. Information on airborne particulate control.

Attachment IV provides the Air Environmental Monitoring Program. Clean water is used for dust suppression at the site.

9. Any other information from the permit or compliance files that you believe would be pertinent to making a determination on this petition.

Attachment V includes the last Part B Notice of Deficiency letter from the MDNR, and the response letter from Rouge Steel. Also enclosed is the Facility Description from the Part B.

We are expecting to public notice the draft RCRA permit by the end of March. I will make sure that you get a copy at that time. If you need any further assistance please feel free to call me at FTS 886-6146.

cc: Rich Traub, REB Elizabeth Cotsworth, Hdgs.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

4 1988 FEB

_A KARR

OFFICE OF SOLID WASTE AND EMERGENCY RESPONSE

MEMORANDUM

Ford Allen Park Clay Mine No-Migration Petition SUBJECT:

FROM:

Amy Mills, Geologist

Assistance Branch (WH-5630

TO:

Richard Traub, Chief

Michigan Section

EPA Region V

As we discussed, Headquarters has received a no-migration petition from the subject facility. I have been delegated responsibility for preparing a response for the Assistant Administrator. In reviewing the petition, I have identified several areas where additional information from the Region's permitting and compliance files on this facility would be helpful. I have supplied a copy of the petition to Carol Witt of your staff, and discussed some of the information gaps with her. She has agreed to send me copies of the following items from the Region's files:

- o Waste analysis plan for all wastes to be placed in Cell #2.
- Information concerning any past compliance problems with environmental significance.
- A summary of interim status monitoring from the Part B.
- The approved ground water monitoring system in the draft permit.

I would also appreciate copies of:

Information on landfill liner materials and installation procedures.

- Field data verifying artesian conditions in the underlying strata.
- o Information on surface drainage from the facility (i.e., surface water exposure routes).
- o Information on airborne particulate control (i.e., air exposure routes).
- o Any other information from the permit or compliance files that you believe would be pertinent to making a determination on this petition.

To the extent that these materials are used in making the determination on this petition, they will be come part of the Agency's docket supporting the Federal Register notice.

Thank you for your cooperation. I plan to communicate frequently with Carol Witt during the course of the petition review, and I welcome any input either of you may have.

cc: Elizabeth Cotsworth
Carol Witt, Region V

and the second s				
	· January Company Comp			
	C:	. 4		
	to the contract of the contrac			
	***	•		
· ·				
e de la companie de l				
•				
				•

REGEIVEN

JAN 2 5 1988

U. S. EPA, REGION V SWB — PMS

> 3001 Miller Road Dearborn, Michigan 48121

December 18, 1987

YEAR L TORR

Mr. Lee Thomas, Administrator
U.S. Environmental Protection Agency
Headquarters
401 M Street
Southwest Washington D. C.
20460

Ford Motor Company

Subject: Petition for Exemption (Land Ban-K061)

Ford Allen Park Clay Mine Landfill

MID #980 568 711

Ford Motor Company hereby submits a petition, pursuant to 40 CFR 268.6, seeking an exemption from a prohibition for disposal of a restricted hazardous waste, specifically K061 - Electric Arc Furnace Baghouse Dust, in the Cell II unit located at the Ford Allen Park Clay Mine Ländfill. We believe the unique hydrogeological conditions at the site demonstrate to a reasonable degree of certainty that there will be no migration from the disposal unit by the hazardous waste or it's hazardous constituents.

Please review this petition and provide your comments to this office at your earliest convenience. Should you have any questions, please call Mr. David Miller at (313) 322-0700.

Yours truly,

Douglas A. Painter, Manager P. 1967. Mining Department

Encl.

cc: Suzanne Rudsinski-E.P.A.

Stephen Weil-E.P.A.

CODY)

PETITION FOR EXEMPTION

FORD ALLEN PARK CLAY MINE LANDFILL MID #980 568 711 December 18, 1987

TABLE OF CONTENTS

SECTION		
I	INTRODUCTION	
II	GROUNDWATER WAIVER DEMONSTRATION	
III	BACKGROUND INFORMATION - AIR, WATER,	SOIL
IV	WASTE ANALYSES	7 44 (8 19 19 1
V	UNCERTAINTY ANALYSIS & SUMMARY	Service of Service Services
77 T	CEPTIFICATION STATEMENT	. A T & . T

		S.	75.
			\$ T
			¥
			*
			y
			· .
٠			
•			
•			
•			
	· ,		

•	·	. .	٠,
,			
<i>t</i>			
		•	
•			
•			
			4
·			

Cell II is bounded on three sides by non-hazardous disposal cells and the fourth side is adjacent to the hazardous waste disposal Cell I. Cell I utilizes the natural insitu clay deposit coupled with the upward hydraulic gradient of the artesian bedrock aquifer as its liner system. The Engineering Drawings dated June 12, 1987 provided in this Section depict the relationship of the unit to the surrounding environment.

	**************************************		• • • • • • • • • • • • • • • • • • • •		
		•			
				i.	

	-		•		
•					
·					
					•
		•			
		. *			
,					

Ford Motor Company

Allen Park Clay Mine Landfill

E.P.A. I.D. No. MID 980568711

Demonstration for Exemption of Subpart F Requirements Under 40 CFR 264.90 (b) (4)

Demonstration is hereby made to waive certain groundwater monitoring requirements as provided for under 40 CFR 264.90 (b) (4) of the RCRA rules, based on the favorable site geology to the aforementioned rules. Specifically, the requested exemption includes all sampling of the artesian aquifer immediately below the insitu saturated clay liner.

Site Description

Depositional Environment:

The site hydrology is governed by the last glacial period in which the Huron-Erie ice lobe occupied southeast Michigan as shown on Exhibit A. When the ice lobe retreated, a proglacial lake (Lake Maumee) formed, as shown on Exhibits B and C. The site vicinity is located at least 16 miles from the shores of this lake. The clay sediments deposited in the site vicinity reflect this low energy depositional environment. The lacustrine clay is generally 80-120 feet in thickness and has become an effective aquiclude since the recession of the lake. The recharge area for the underlying aquifer is the moraine and outwash complex to the northwest and the underlying Devonian carbonate formations.

Artesian Aquifer:

The confined aquifer is located approximately 70 feet below the existing grade at the Allen Park site and varies in thickness from one to six feet. It exerts an upward hydrostatic pressure on the clay aquiclude equivalent to 80 feet of head. This hydraulic gradient in the upward direction is a counteracting force against those of leachate migration (drag coupling effect and chemico-osmotic diffusion). Under these conditions, there is no potential for migration of liquid from the regulated unit to the uppermost aquifer during the active life of the regulated unit and the post-closure care period. Refer to Exhibit D for a full discussion on leachate migration at the facility.

Subsurface Soil Conditions:

The uniformity of the clay sediments in the Detroit area (Erie-St. Clair Plain) has been documented by the numerous soils exploration and foundation engineering studies required for all of the building and construction projects in the vicinity.

To be site specific, the following documentation has been established:

- 1) Clay mining operations, excavating clay for the manufacture of cement, have encountered more than 45 feet of uniform material over the entire site.
- 2) Seismic work on the cell bottom indicates that the bedrock is between 57 and 70 feet below the cell bottom with uniform material to that depth. Refer to Exhibit E.

	***	**	
•			

- 3) Soil samples taken from the five most recent borings indicate the clays are saturated to the surface from the artesian aquifer. Refer to Exhibit F.
- 4) Soil tests performed (grain size analysis, atterberg limits and permeability) on the clay provided more than adequate uniformity. Refer to Exhibit G.
- 5) The 12 deep borings indicate uniform soil conditions. Refer to Exhibit H.
- 6) The deep monitor wells into the artesian aquifer provide piezometric surface elevations that are consistent with the regional data which conclude that ground surface is below the piezometric surface. Refer to Exhibit H.
- 7) Additional studies, maps, and tests relating to subsurface conditions at the site indicate that subsurface clay is in excess of 25 feet thick with a permeability coefficient which is no greater than 6.0 x 10⁻⁰ cm/sec. In addition, the underlying artesian aquifer exerts hydrostatic pressure in an upward direction which precludes the possibility of leakage from the cell into the liner during the active life of the disposal facility. Refer to Exhibit H.
- 8) Additional geological information is provided by W. H. Sherzer, "Geological Report on Wayne County", Publication 17, Geological Series 9, 1913.

Summary:

Under the conditions stated in this demonstration, there is no potential for migration of liquid from the regulated unit to the uppermost aquifer during the active life of the regulated unit and the post-closure care period. The monitoring of water quality in the artesian aquifer cannot possibly detect leachate migration from the overlying disposal site. Accordingly, it is therefore believed that the Allen Park Clay Mine Landfill qualifies for the groundwater monitoring waiver set forth under the applicable regulations.

Prepared by: David S. Miller, Geologist
Mining Properties Department
Rouge Steel Company
(University of Michigan B.S. 1977)

••		**	**	
				
	•			
		4		

EXHIBIT A

(Map from Frank Leverett)

EXHIBIT B

(Map from Frank Leverett)

EXHIBIT C

		mga "

Report Prepared for:

Wayne Disposal, Inc.

CONTAINMENT INTEGRITY OF ALLEN PARK CLAY MINE/LANDFILL

by

Donald H. Gray Professor of Civil Engineering The University of Michigan

Ann Arbor, Michigan
July 1983

•	' tus	• • •
	×	
		-29
		-ap *
		ugo 1
		- - '
		٠٠٠٠٠
		٠٠٠٠٠
		٠٠٠٠٠
		٠٠٠٠٠
		٠٠٠٠٠
		٠٠٠٠٠
		- -'
		- -'
		- -'
		-

SUMMARY

The possibility of leachate migration downward from the Allen Park Clay Mine/Landfill and contamination of an aquifer beneath were evaluated.

Analyses show that density differences between the leachate and groundwater will not cause a downward migration nor will they lead to a diffusion efflux from the site. A thick, uniform layer of silty clay beneath the site coupled with an upward hydraulic gradient effectively precludes the latter.

Comparison with results of salt water intrusion studies across clay aquitards having similar properties as the clay beneath the Allen Park site show that the solute (salt) will take at least 800 years to migrate across a clay barrier 30 feet thick under chemico-osmotic diffusion alone. A counter (or upward) hydraulic gradient will lengthen this breakthrough time even further.

There are insufficient amounts of organic compounds in the waste to affect the permeability of the clay. The probability of accelerated leachate migration through the underlying clay is not supported by the composition of the wastes and the nature of the clay nor by the findings of leachate permeability studies reported in the technical literature.

Under these circumstances any observed increases in contaminant levels of monitor wells in the aquifer underlying the site could more reasonably come from sources laterally upgradient from the site rather than the clay mine/landfill above the site.

	4		

TABLE OF CONTENTS

			Page
	SUMMA	DRY	1
I.	INTRO	DUCTION	1
II.	THE I LEACH	NFLUENCE OF PERMEANT DENSITY ON NATE MIGRATION ACROSS CLAYS	2
	A.	General	
	В.	Influence of Permeant Density Increase on Hydraulic Conductivity	
	c.	Influence of Permeant Density Increase on Solute Diffusion	
III.	EFFEC PERME	T OF LEACHATE CONSTITUENTS ON ABILITY OF CLAYS	g
	A.	General	
	В.	Waste and Leachate Composition at Allen Park Clay Mine/Landfill - Type II Landfill	
	C.	Probability of Organics in Leachate Affecting Clay Permeability at Allen Park Clay Mine 1. Type II Solid Waste Landfill 1. Type 1 Hazardous Waste Landfill	
IV.	CONCLU	SIONS	12
٧.	REFERE	NCES CITED	13

	•		**
			÷
		•	
•			

CONTAINMENT INTEGRITY OF ALLEN PARK CLAY MINE/LANDFILL

I. INTRODUCTION

The Ford Motor Company who operate the Allen Park Clay Mine/Landfill have recently petitioned to discontinue ground water monitoring of an aquifer located approximately 70 feet below existing grade at the site. The landfill is underlain by dense, lacustrine clay which behaves as an aquiclude or aquitard. At least 25 feet or more of residual clay thickness separates the bottom of the landfill from the underlying aquifer. The aquifer is under artesian pressure and exerts an upward hydrostatic pressure on the base of the clay aquitard equivalent to 80 feet of head. A general cross section or profile illustating these soil and hydrologic conditions at the site is shown in Figure 1.

Applicant maintains in his petition for discontinuance (EPA I.D. No. MIT 980568711) that monitoring is not necessary at the site because of a) the dense, uniform clay underlying the site which has a hydraulic permeability no greater than 6 x 10 cm/sec and b) the artesian pressure in the underlying aquifer which results in an upward hydraulic gradient across the overlying clay aquitard. Applicant claims that these site conditions will preclude the possibility of leachate migrating downwards out of the landfill and eventually contaminating the aquifer.

In response to this petition, the Wayne County Department of Public Health has raised several questions and concerns (letter form R.N. Ratz, Public Health Engineer, to B. Trethewey, Mining Properties Department, Ford Motor Company, 28 April 1983). The following concerns were raised in the letter:

- The petition/report fails to address the possibility of leachate migrating down due to differences in densities of the leachate and groundwater.
- The petition/report does not indicate if there are any organic constituents in the leachate that may increase the clay's permeability and permit downward movement.

The purpose of the present report is to respond to the above stated concerns. Additional information about the geohydrology of the site, about past containment/migration studies, and about the likely nature of the leachate and its effect on clay permeability are evaluated herein to determine the danger of landfill leachate migrating downwards from the site and reaching the underlying aquifer.

·	· ·	**
		en e

NW - SE GENERALIZED CROSS SECTION

BCALE

Vertical 1" = 100 Feet Horizontal 1" = 2 Miles

Reference Map

USOS - Mich. Detroit District Geology by W. H. Sherzer

Figure 1. Generalized cross-section through Allen Park Clay Mine/Landfill showing soil and hydrologic conditions.

rs.	· •	• 5
		· ·
		4 F
		,

II. THE INFLUENCE OF PERMEANT DENSITY ON LEACHATE MIGRATION ACROSS CLAY BARRIERS

A. <u>GENERAL</u>

Permeant density plays a direct and indirect role in flow phenomena in porous media. Permeant density can affect solvent or solution flow rates via its influence on hydraulic conductivity. This influence can be calculated and shown to be minor or insignificant compared to the more likely and important influence of permeant density on solute diffusion.

A newly introduced permeant with a high concentration of dissolved material (e.g., a leachate) will also have a higher density. This high concentration in turn will cause the solute to diffuse through a porous medium to regions of lower concentration. It is this manifestation or aspect of a density increase in the permeant that requires careful scrutiny and analysis. In other words, the role and influence of permeant density are more important to solute diffusion under concentration gradients as opposed to solvent (or solution) convection under hydraulic gradients.

The analyses that follow are offered in support of these claims.

B. INFLUENCE OF PERMEANT DENSITY INCREASE ON HYDRAULIC PERMEABILITY

Both the viscosity and unit weight of a permeant can influence the permeability of a soil to a particular permeant. The hydraulic conductivity is defined in this case as a flow velocity under a unit hydraulic gradient (the usual practice in civil engineering). The influence of permeant density and viscosity can be ascertained explicitly by defining another permeability, i.e., the "intrinsic" or "absolute" permeability

$$K = \frac{\kappa \, p}{\xi} \qquad . \qquad . \tag{1}$$

Where:

k = hydraulic conductivity, cm/sec

K = intrinsic or absolute permeability, cm2

& = permeant density or unit weight, dynes/cm3

μ = permeant viscosity, poise

The intrinsic permeability(K) is a property only of the solids or matrix through which the permeant passes. Accordingly, for a particular soil (i.e., given grain size distribution and soil structure) and in the absence of permeant-soil reactions, K should be a constant. The influence of a variation in viscosity and density of the permeant on the hydraulic conductivity can be determined from this fact and from a relationship derived from Equation 1, viz.,

$$\kappa_2 = \kappa_1(\frac{\kappa_2}{2}) (\mu_1/\mu_2)$$
 (2)

where: subscript 1 - initial conditions (grnd water) subscript 2 - final conditions (leachate)

An increase in density of the permeant will apparently cause a higher permeability. But, this same increase in density can also result in an increase in viscosity which will reduce the permeability. Both influences together will tend to offset one another, and it is unlikely that a density increase in the permeant (leachate) will significantly affect hydraulic conductivity. Furthermore, even if viscous retardation is discounted, density increases are highly unlikely to significantly increase permeability in actual practice as the following example will show.

Assume the ground above an aquitard or clay barrier is flooded with a fairly concentrated brine solution, namely sea water. The density of sea water (with a TDS of 36,000 ppm) is 1.036 gm/cc at 4°C vs. the density of the present interstitial water (with an average TDS of 1550 ppm) which is 1.002 gm/cc. This leads to a density ratio of 1.034 which is equivalent to only a 3.4 per cent increase in hydraulic conductivity (discounting viscous retardation). Therefore, density has little effect on hydraulic conductivity despite the almost.20 fold increase in dissolved solids concentration. It is the influence of the latter change, i.e., the increase in dissolved solids concentration, that requires careful analysis in evaluating the effectiveness of a clay barrier in containing leachate migration in this case.

C. INFLUENCE OF PERMEANT DENSITY INCREASE ON SOLUTE DIFFUSION

1. Background

Dissolved solids or solutes in a permeant can be transported through soils under both hydraulic and concentration gradients. The former is referred to as "drag coupling" and the latter as "chemico-osmotic diffusion." Both types of movement should be considered when evaluating the effectiveness of a clay barrier for preventing leachate migration.

Chemico-osmotic effects in fine grained soils have been examined in some detail by Olsen (1969) and Mitchell et al.(1973). The importance of chemico-osmotic diffusion increases in fine grained soils wilth low hydraulic conductivities. Studies commissioned by the State of California(1971) on salt intrusion problems in aquifer-aquitard systems have shown that as aquitards become clay rich and their permeabilities fall to levels on the order of .002 gpd/ft or 10⁻⁷ cm/sec, the migration of solutes will be controlled by chemico-osmotic diffusion.

	•	•	•
			,
			:
			•
•			

2. Flow of Solute under Combined Hydr. and Chem. Gradients

Equations can be derived which describe the flows of solute and solution in the pores of a sediment. The derivation of these equations and assumptions on which they are based are given by Mitchell et al.(1973). The one-dimensional, vertical, steady state flux of solute across a clay aquitard under a combined salt concentration(chemical) gradient and hydraulic gradient is given by the following relationship:

$$J_{S} = [(^{2}\sqrt{TR})c_{3}k_{ch} + c_{5}k_{h}] \frac{\partial h}{\partial z} + [D + c_{3}k_{ch}] \frac{\partial c_{5}}{\partial z}$$
 (3)

where: J = salt flux across an aquitard, moles/sec/cm²

ah/az = hydraulic gradient (dimensionless)

ac /az = solute concentration gradient, moles/cm⁴

D = diffusion constant, cm²/sec R = gas constant, ergs/mole/*K L = density of water, dynes/cc

T = absolute temperature, *K

c_s = average salt concentration, moles/cc

k_h = hydraulic conductivity, cm/sec

Relative contributions to the salt or solute flux can be calculated from Equation 3. Movement of solute can occur by diffusion whether a hydraulic gradient is present or not. A superposed hydraulic gradient may retard or accelerate movement of solute depending on:

- a) Relative magnitude and direction of the hydraulic and solute concentration gradients.
- b) Values of the hydraulic conductivity and chemicoosmotic coupling coefficient.

Equation 3 only yields the steady state flux of solute under combined hydraulic and chemical gradients. Equations can also be derived that give the initial or time dependent solute fluxes and the time required for "breakthrough" or first appearance of increased solute concentration on the downstream side of the aquitard. This initial, non-steady state process is quite complicated. Examples have been worked out for aquitards of different thicknesses and composition by Mitchell et al. (1973).

One of the most important findings of these studies on salt flux across clay aquitards was the importance of aquitard thickness on breakthrough time. Because the initial movement is non-steady, the breakthrough time increases with the square of the thickness of the aquitard. Theoretical studies of salt water intrusion across aquitards (State of California, 1971) have shown that salt ions will

take up to 800 years to migrate across an aquitard 30 feet thick under chemico-osmotic diffusion alone. If the thickness is reduced to 10 feet, the breakthrough time decreases to only 80 years. The presence of an hydraulic gradient could either accelerate or retard this time depending on the relative magnitude and direction of this gradient and other factors cited previously (see Figure 3).

3. Likelihood of Solute Efflux Through Clay at Allen Park Site

Solutes will tend to migrate or diffuse downward from the landfill along a concentration gradient. On the other hand, this movement can be impeded or even arrested by the upward hydraulic gradient as a result of artesian pressure in the underlying aquifer. Static water levels in monitor wells around the landfill show that the piezometric surface is almost 10 feet above existing grade or ground surface elevation at the site (see Table 1). The net, steady state flux of solute, if any, can be determined under these conditions from the solute flow equation cited previously (Equation 3).

It is also pertinent to examine the results of a similar type of study commissioned by the State of California (1971). The latter study was designed to determine salt efflux rates and breakthrough times in an aquitard-aquifer system in the coastal ground water basin near Oxnard, California (see Figure 2). The problem posed in the California study was basically the same as the pre-sent one; namely, given a sudden increase in dissolved solids or solute concentration atop a clay barrier (or aquitard) how long before the salt migrated downward and reached an underlying aquifer and at what rates of efflux? The problem was compounded in the California example as a result of drawdown of the piezometric surface in the underlying aquifer which also caused a downward hydraulic gradient.

The two aquitards are quite similar in their important respects. Both are approximately the same thickness, have the same initial dissolved solids concentration, and are composed of clayey sediments with low hydraulic conductivities. The salient charateristics and parameters of these two aquitards are summarized and compared in Table 2. The main difference appears to be in their respective hydraulic conductivities—the Allen Park clay is an order-of-magnitude lower.

A dissolved solids concentration equal to that of sea water was assumed in the leachate overlying the Allen Park clay. Sea water is a good "worst case" choice because sodium ions have high diffusion mobilities and are not preferentially adsorbed on clay exchange sites as heavy

-		•		•		
						į
					•	
	•					
		•				
						i

Well Number	Ground Elevation, Ft.	Well Elevation (1) USGS	Ground Water (Elévation 11-4-81	2) 	Ground Water (3) . Elevation 5-29-81	Ground Water (3) Elevation 3-26-81
2	595.1	600.76	600.67	36	600.44	600.21
5	595.7	605.92	605.09	q.4	604.62	604.49
7	594.1	597.35	591.01	- 3.1	593.23	594.14
10	593.4	603.03	601.81	8.4	601.93	601.56
W-101	593.9	601.47	601.21	7.3		
W-102	591.3	600.81	603.22 ⁽⁴⁾	11.9		
₩-103	593 . 9	605.06	603.52	٩.6		
H-104	594.1	603.82	603.81	7.6		
W-105	594.5	. 604.08	603.86	9.4		

⁽¹⁾ Well Elevation is recorded as top of standpipe.

AN = 8.9

⁽²⁾ Data Recorded by Michigan Testing Engineers, Inc.

⁽³⁾ Data obtained from Michigan Department of Natural Resources.

⁽⁴⁾ Well extended temporarily to obtain water level.

•	•		
			•
			·
		•	

TABLE 2. COMPARISON OF AQUITARD PROPERTIES AND SITE PARAMETERS

AQUITARD PROPERTY OR SITE PARAMETER	OXNARD CALIFORNIA	ALLEN PARK MICHIGAN
Composition	clayey silt & silty clays	silty clay
Thickness, ft	30	25 - 35
Ave. Water Content, %	24	20
Ave. Liquid Limit, %	31	28
Ave. Hydraulic Conduct, cm/sec	1 x 10 ⁻⁷	2.6 x 10 -8
Hydraulic Gradient	0.33 - 1.0 (downward)	2.7 (upward)
Initial (interstitial) Pore Water Solute Conc, ppm	1800	1550
Final Solute Conc, ppm	36,000	36,000 (assumed)
Chemico-Osmotic Coupling Coefficient, cm ⁵ /mole/sec	6.2 x 10	6.2 x 10

	••	·
	·	

Figure 2. Generalized cross-section of multiple aquifer in a coastal basin. Salt flux across aquitard can occur as result of either salt water intrusion into aquifer (1,2) or salt water entering directly above aquitard in shallow coastal waters or marinas (3,4), or from salt contamination in near surface, perched aquifer (5).

(

Figure 3. Solute efflux across aquitard into underlying aquifer as a result of salt water intrusion in overlying aquifer.

Aquitard is 30 feet thick and has a hydraulic conductivity of 10 cm/sec. Pumping from lower (Mugu) aquifer superposes a 0.33 downward gradient on system.

•			
			•

metal ions would tend to be. The same chemico-osmotic coupling coefficient used in the California aquitard was also assumed applicable for the Allen Park clay. The value used is reasonable for the type of clay sediments present.

Results of the California study are presented in Figure 3 which shows the salt influx into the underlying aquifer as a function of time. Curves are presented for a no drawdown and 10-foot drawdown case (assuming the hydraulic gradient acts in the same direction as the salt concentration gradient). The horizontal portion of the two curves represents the steady state salt flux.

The main things to notice from this figure are the large breakthrough time (800 years) for the "no drawdown" case (i.e., in the absence of any hydraulic gradients) and the fact that in this aquitard the salt flux caused by drag coupling under a hydraulic gradient is larger. The steady state salt flux from the drag coupling under a combined 10-foot drawdown and salt concentration gradient is almost three times that from diffusion alone (no drawdown). Hence, in the event the hydraulic gradient was reversed, there would be no breakthrough and no downward salt flux provided the upward gradient exceeded about 0.2. In other words, under these conditions the two salt fluxes would be mutally opposed and exactly counterbalanced.

The relative contributions to steady state efflux in this example can be calculated with the aid of Equation 3. The following parameter values (taken from the study) were used in the calculation:

$$\frac{\partial h}{\partial z} = \frac{\Delta h}{\Delta L} = \frac{10}{30} = 0.33$$

$$\frac{\partial c}{\partial z} = \frac{(c_{s_2} - c_{s_4})}{\Delta L} = \frac{0.57 \times 10}{914} = 0.62 \times 10 \text{ moles/cm}^4$$

$$\frac{c_s}{g} = \frac{(c_{s_2} + c_{s_4})}{2} = \frac{(0.60 - 0.03) \times 10}{2} = 0.32 \times 10 \text{ moles/cm}^3$$

$$D = \frac{10^5}{cm^2/sec}$$

$$R = 8.32 \times 10^7 \text{ ergs/mole/}^9 \text{K}$$

$$T = 300 \text{ K}$$

$$\frac{d_{s_4}}{d_{s_4}} = \frac{10^3}{cm/sec}$$

$$k_h = \frac{10^7}{cm/sec}$$

$$k_{c_1} = 6.2 \times 10^{-4} \text{ cm}^5/\text{mole/sec}$$

Using these values the calculated contributions to steady state solute flux are respectively:

	·	
		•

This flux is greater than 3X the chemico-osmotic flux; and since it acts in the opposite direction, there will be no net downward flux of solute at the Allen Park site. The critical hydraulic gradient to maintain a zero net salt efflux is 0.8. This means that the groundwater table could rise to within 12 feet of present ground elevation (~595 ft) in the landfill and there would still be a sufficient upward hydraulic gradient (drag coupling effect) to completely counter solute efflux under chemico-osmotic diffusion (see summary below).

Position of Ground Water Table in the Landfill	Upward Hydraulic Gradient	Net, Steady State Solute Efflux Rate (moles/sec/ft ²)
At bottom	2.7	-1.51 x 10 6 (net influx)
12 feet from top	0.8	zero
At top	0.33	+0.32 x 10

These calculations are based on the existence of a static or piezometric head in the underlying aquifer approximately 9-10 feet above ground elevation (see Table 1).

Assumption of worst case conditions, namely, a rise in the groundwater table in the landfill to ground surface elevation, leads to a small, steady state efflux rate from chemico-osmotic diffusion. This occurs because the resulting hydraulic gradient (0.33) is no longer large enough to completely oppose the chemico-osmotic salt flux. The breakthrough times, however, would be so immense (1000's of years) that the steady state flux under these conditions is largely irrelevant.

It is important to note that the preceding calculations are also based on the following "worst case" assumptions:

- 1. A highly saline leachate with a concentration and composition equal to that of sea water.
- No interaction between the solute and clay.

In actual practice, there would be some uptake and adsorption of solutes on the clay. This adsorption would attenuate or limit further solute concentrations in the leachate as it passed through the clay.

•	.	.	•
			•

III. EFFECT OF LEACHATE CONSTITUENTS ON THE PERMEABILITY OF CLAY

A. GENERAL BACKGROUND

The possibility that leachate--either in the solvent or solute phase--might affect clay permeability and hence its containment integrity has been raised by a number of investigators (Anderson and Brown, 1981; Haxo, 1981; and Folkes, 1982). One of these studies has shown that concentrated organic liquids can increase clay permeability by several orders-of-magnitude (Anderson and Brown, 1981).

All of these studies were conducted in the laboratory with simulated leachates from particular types of wastes and under particular testing conditions. The danger of blindly applying these test results to a field situation have been noted recently by Gray and Stoll (1983). It is essential to ask the following before the results of these lab tests can be applied to a given field situation:

- What was the nature of the leachate in the lab tests?
 What are the concentrations of various constituents in the leachate in the field as opposed to the lab tests? How relevant are the lab test results in the light of potentially large differences in leachate composition (lab vs. field)?
- 2. How did the leachate contact or interact with the clay in the lab tests? Was it forced through? If so, at what gradient? Is there any prospect that the leachate will be able to penetrate/permeate through the clay containment in the field in like manner? In other words are the necessary gradients and other conditions present to permit this to happen?
- What was the failure or clay degradation process by which the apparent permeability increase occured in the lab tests? Was it by a) dissolution, b) syneresis, c) piping? Could these mechanisms reasonably occur in the field given the type, water content, and density of the in-situ clay plus the nature and concentration of organic and inorganic compounds in the leachate?

B. WASTE AND LEACHATE COMPOSITION AT THE ALLEN PARK CLAY MINE

The types, composition, and relative amounts of wastes placed in the Type II Solid Waste Landfill at Allen Park are shown in Tables 3 and 4. The results of typical E.P.T leachate tests on these wastes are shown in Table 5. The likely nature and composition of the landfill leachate can be estimated from this information. This estimate is adequate for purposes of evaluating the probable effect of the leachate on clay permeability.

,		••	•	
				; •
	•			

TABLE 3. ALLEN PARK CLAY MINE - SOLID WASTE LANDFILL CONSTITUENTS

Fly Ash	@	50%
Blast Furnace Filter Cake	**	15%
Construction Debris - Sweepings - Clean-Up	&	14%
BOF Dust	6 5	64
Foundry Seni	eta	64
Electric Furnace Dust		4.8%
Coal and Coke	e s	3%
Coke Oven Decenter Tar Sludge	•	0.64
Glass	a	0.5%
Wood Ash	•	0.5%
BOF Kish		0.3%
Wastewater Treatment Sludge		0.2%
Grinding Mud	-	. 0.1%

N.	•	•		***
		-		
			·	
				,
		,		

TABLE 4. ALLEN PARK CLAY MINE WASTES. TYPICAL AS RECEIVED ANALYSES (mg/kgm).

	Decenter Tank Tar Sludge	Electric Arc Lurn, Dust	Diast Furn. Fluc Oust	MOF Flue Dost	Plast furn. Filter Cake	foundry Sand	nor kish	Fly Ash	i Ime Dust	Cake Arcese
EP Toxic	llo	Yes (Zn, Pb, Cd)	Но	Nn	llo	fl ₉	No	Extanti	No	iie
Iron Carton Arsenic		350,000 4,700 50	122,000 520,000	560,000 7,400 42.	150,000 404,000	1,200 6,600	490,000 240,000	34,500 194,000	\$ \$ & \$ \$	5,800 550,000
Bartum	\$P 40 45 \$P	« 1	< }	` < [`	50	20 ∢]	7B 4]	****	© 0 0 0 © 0 0 0	15
Cadmium Chromium	20 60 40 40 60 40	95 500	< <	50 130	70 70	< <	60 60	######################################	\$P 40 40 40 \$P 40 40 40	
Lead Mercury	## # # # #	<4,500 <1	<1 <1	3,000	350 <1	44 4]	« l	\$\psi \text{\$\psi\$} \text{\$\psi\$} \text{\$\psi\$} \text{\$\psi\$}	# # # # # # # # # # # # # # # # # # #	· J
Scienium Silver	************************	120 F	90 <1	<) <)	9]5 <]	70 «)	******	***************************************	3 15
Manganese Zinc Phosphorus	0 0 0 0 4 0 0 0 5 0 0 0	39,000 150,000 450	7,500 120 200	10,000 22,000 190	4,500 400 300	79 40	2,800 194	\$\$ \$ \$ \$ \$\$ \$ \$ \$ \$	\$7 80 40 40 40 40 40 40 40 40 40 40 40 40 40	70 110
Sulfur Calcium	60 67 db 69	3,600 61,000	4,000	1,600 2,000	4,000 4,000 20,000	400 200	170 350	3,100	**************************************	90 7,300
Hagnes I wa	** ** ** ** ** ** ** ** ** ** ** ** **	11,000	18,000 7,500 2,200	9,600	13,000 3,700	60 100 «2	580 3,000	13,100 5,400	714,700	300 300
Aluminum Silicon	an Gr 40 do	15,000 5,900	20,000 980	∢2 8,000 5,000	A3,000 2,200	450,000	1,600 25,000	147.200 201.700	****	20,000
Potassium Sodium	**************************************	5,200 26	440 10	2,300 23	1,500	170 390	64D 630 4B	9,700 3,700	85 65 45 45	620 630
Fluorine Cyanide	14	d)	< 1	«) «1	3	4	=0 <1 •		4.00 4.00	< 1 2
Phenol Kaphthalene	1.890 2.700	<1	< l	 <1		~ 6		\$\phi \tau \tau \tau \tau \tau \tau \tau \tau		

_		**		

TABLE 5. ALLEN PARK CLAY MINE SOLID WASTES
TYPICAL E.P.T. LEACHATE TEST RESULTS (Mc/1)

Parameter	Blast Furnace Flue Dust	BOF Flue Dust	Blast Furnace Filter Cake	Found ry Sand	BOF Kish	Coke Breeze	Wustewater Treatment Sludge
Arsenic	0.04	0.02	۷٥.1	0.03	0.1	40.1	, Ou!I
Berium	<0.8	<0.04	< o.8	40.08	2 0.8	۷٥.8	.45
Cadmium	0.01	0.03	< 0.08	20.005	<0.005	<0.005	.005
Chromium	20.1	20.05	Z 0.05	۷٥.1	< 0.1	20.1	.101
Leud	۷0.2	1.7	1.7	₹0.2	<0.5	40.2	.org
Mercury	0.0007	۷ 0.01	< 0.2	40.2	40.5	40.2	.OXY
Selenium	1.0	ر ٥,٥١	<0.a+	0.10	0.4	10.5	, •)(`); <u>}</u>
Silver	۷ 0.1 .	۷٥.01	< 0.0L	(0.1	۷0.1	CO.1	, (b, b,

Compile! By AMEYO Harch 1, 19 5

The data in Tables 3 and 4 indicate that 50 per cent of the solid waste consists of relatively inert fly ash and that some 89 per cent of the wastes consist of materials that do not contain significant amounts of heavy metals (Zn, Pb, Cd) or organics known or suspected to be toxic such phenol and naphthalene (see Table 4). The coke oven decanter tar sludge is a possible source of organics (phenol and naphthalene), but this waste comprises only 0.6 per cent of the total stream in the Type II Solid Waste landfill.

C. PROBABILITY OF ORGANICS IN LEACHATE AFFECTING CLAY PERMEABILITY AT ALLEN PARK SITE

Anderson and Brown (1981) found that several organic liquids, viz., aniline, acetone, ethylene glycol, heptane, and xylene, cause large increases in permeability of four compacted clay soils. Pure organic liquids were used in their study. One of the authors (Anderson, 1982) later emphasized that their results cannot be used to support claims that clay liners permeated by dilute organic liquids may be susceptible to large permeability increases.

Haxo (1981) reported results of up to 52 months of liner exposure to selected industrial wastes. He included several organic wastes, namely, aromatic oil, Oil pond 104, and a pesticide. The results of large permeameter tests on a compacted fine-grained soil and admixed materials are summarized in Table 6. Although a small amount of seepage passed through the compacted, fine-grained soil liner, no permeability increases were reported with any of the organic wastes.

On the basis of these studies and with the caveats noted at the beginning of this section in mind, it is possible to evaluate the likely effect of the landfill leachate on clay permeability at the Allen Park site.

l. Type II Solid Waste Landfill

As noted previously the existing landfill contains small quantities of coke oven decanter tar sludge which is a possible source of organics (phenol and naphthalene), but this waste comprises only 0.6 per cent of the total. Phenol and naphthalene are present in the tar component of this waste in concentrations estimated by Desha (1946) of 0.1 and 2.2 per cent by weight respectively. Accordingly, the amount of phenol and naphthalene present in the total waste stream are .006 and .013 per cent by weight respectively. amounts constitute a very low fraction and they suggest that leachate from the total waste stream will tend to have very low concentrations of phenol and napthalene. Therefore, the organics in the leachate from the Type II Solid Waste landfill are quite unlikely to affect clay permeability.

	•	•	
•			
•			

TAPLE 6. EFFECTS OF INDUSTRIAL WASTES ON SOIL AND ADMIX LINERS (from Pago, 1981)

Liner	Acidic waste	Alkaline waste	Lead (low lead gas	Oily waste				
material	(HNO ₃ , HF, HOAC)	(spent caustic)	washing)	Aromatic oil	Oil pond 104	Pesticide (weed killer		
Compacted fine-grained soil 305 mm thick	Not tested	υ, ≈ 10 ⁻¹⁰ -1	rate of seepage 10 ⁻⁹ m/s, waste n after 30 months (a)	k=1.8×10 ⁻¹⁰ k=2.4×10 ⁻¹⁰ k=2.6×10 ⁻¹⁰ (lests on soil after 30 months)	†	t		
Soil cement 100 mm thick	Not tested		No measurable seepage after 30 months					
Modified bentonite and sand (2 types) 127 mm thick	Not tested	Measurable seepi	nge after 30 months, ch Into bentonite (b)	annelling of waste	Failed (waste seepage through liner)	\$		
Hydraulic asphalt concrete 64 mm thick	Failed	Satisfactory	Waste stains below liner asphalt mushy	Not lested	Not tested	Satisfactory		
Spray-on asphalt and fabric 8 mm thick	Not tested	Satisfactory	Waste stains below lines ,	Not tested	Not tested	Satisfactory		

[‡]Same es (b).

2. Type I Hazardous Waste Landfill

In the future the decanter tar sludge will be placed in a separate landfill that will be upgraded to accept hazardous wastes. This action will increase the relative proportion of organics (phenol and naphthalene) in the waste stream. Leachate tests run on pure samples of decanter tar sludge using a distilled water extraction procedure (Calspan, 1977) have produced phenol concentrations of approximately 500 ppm. Even this concentration is far removed from the very high concentrations of organic solvents used by Anderson and Brown (1981) in their permeability tests on different clays. Accordingly, organics in the leachate from the Type I Hazardous Waste landfill are also unlikely to affect clay permeability.

In summary: It does not appear likely nor reasonable that organics present in the wastes at the Allen Park Clay Mine/Landfill will cause a permeability increase given their low concentration and the absence of any substantiation in the published technical literature for such an increase under these conditions.

		•		
•				
•				

IV. CONCLUSIONS

- (1). There appears to be very little likelihood of leachate migrating downward from the Allen Park Clay Mine/Landfill and contaminating the aquifer beneath the clay.
- (2). A density difference between the leachate and groundwater will have little or no influence on hydraulic permeability or downward migration nor will it lead to diffusion efflux of solutes. A thick, uniform bed of silty clay beneath the site coupled with an upward hydraulic gradient precludes the latter. Calculations and analyses are provided herein to support this finding.
- (3). Comparison with results of salt water intrusion studies across clay aquitards having similar properties as the clay beneath the Allen Park Clay Mine site show that the solute (salt) will take at least 800 years to migrate across a clay barrier 30 feet thick under chemico-osmotic gradients alone. A counter (or upward) hydraulic gradient will increase this breakthrough time even more.
- (4). The waste and its leachate are unlikely to increase the permeability of the underlying clay. This claim is reasonable in view of the low concentrations of organics in the total. Waste stream and in the light of the findings and caveats of permeability/exposure tests with organic permeants reported in the technical literature. This conclusion applies to both the existing Type II Solid Waste landfill and a proposed Type I Hazardous Waste landfill that will accept the coke oven decanter tar sludge.
- (5). The composition of the waste and underlying clay do not suggest properties or combination of properties that could lead to a containment failure caused by such processes as piping, acid/base dissolution, or syneresis.
- (6). Under these circumstances any observed increase in contaminant levels of monitor wells in the aquifer underlying the site could just as well come from other sources laterally upgradient from the site rather than from the clay mine/landfill above the site.
- (7). These findings and conclusions support the basis of applicant's petition for discontinuing further monitoring of the wells penetrating the aquifer beneath the site.

		*.

V. REFERENCES CITED

- Anderson, D. (1982). *Does landfill leachate make clay liners more permeable?* Civil Engineering-ASCE, Vol. 52, #9, 66-69
- Anderson, D. and Brown, K.W. (1981). "Organic leachate effects on the permeability of clay liners," In Land Disposal: Hazardous Waste, Proceedings, 7th Annual Research Symposium, U.S. Envl. Protection Agency, Philadelphia, pp. 119-130
- Calspan Corp (1977). "Assessment of industrial hazardous waste practices in the metal smelting and refining industry," v. 3, Appendices. EPA Contract No. 68-01-2604, April 1977
- Desha, L. (1946). Organic Chemistry. McGraw-Hill Book Company, New York, NY
- Folkes, D.J. (1982). "Control of contaminant migration by use of clay liners," <u>Can. Geotech Journ.</u> Vol. 19, pp. 320-344
- Gray, D.H. and Stoll, U. (1983). "Leachates and liners," Civil Engineering-ASCE, (letter to editor), Vol. 53, No.1, p. 20
- Haxo, H.E. (1981). "Durability of clay liners for hazardous waste disposal facilities," In Landfill Disposal: Hazardous Waste, Proceedings, 7th Annual Research Symposium, U.S. Envl. Protection Agency, Philadelphia, pp. 140-156
- Mitchell, J.K., Greenberg, J.A., and Witherspoon, P.A. (1973).

 "Chemico-osmotic effects in fine-grained soils," <u>ASCE Journ.</u>

 of <u>SMFD</u>, Vol 91, No. SM4, pp. 307-321
- Olsen, H. (1969). "Simultaneous fluxes of liquid and charge in saturated kaolinite," <u>Soil Sci. Soc. of Amer. Proceedings</u>, Vol. 33, No. 3
- State of California (1971). "Aquitards Sea Water Intrusion in the Coastal Ground Water Basin of Oxnard Plain, Ventura County," <u>Bulletin</u> 63-4, State of California, Dept of Water Resources

••		
		•
		-
		,

JULY 1983 REPORT

CONTAINMENT INTEGRITY OF ALLEN PAR CLAY MINE / LAND FILL

1704 Morton Street Ann Arbor, Michigan 48104

25 September 1983

Mr. Mark Young Wayne Disposal Company P.O. Box 5187 Dearborn, MI 48128

RE: Allen Park Clay Mine/Landfill

Dear Mark:

I recently wrote a computer program (*CLAYWALL*) that can be used to calculate solute transport across a clay barrier under combined diffusion and advection (hydraulic flow). The program computes the exit/source concentration ratio (C/Co) as a function of elapsed time (t) on the downstream side of a clay wall or barrier of thickness (X).

The program was written with a clay slurry cut-off wall in mind, but is general enough that it can be used with any clay layer or barrier. The input parameters to the program are:

D_e = efffective diffusion coefficient, ft²/yr

K = hydraulic permeability, ft/yr

X = thickness of wall or barrier, ft

P = porosity

I = hydraulic gradient...(+) if same direction,
 (-) if opposite direction to solute concentration gradient

t = elapsed time, yrs

The program is based on the solution to the equation that describes one-dimensional solute transport in a saturated porous medium under both hydraulic and solute concentration gradients. This equation has the following form:

C/Co = 0.5[erfc((X-vt)/sqr(4DK)) + exp(vX/D) erfc((X+vt)/sqr(4DK))]

where: v = ave seepage velocity = (RI/P)

The solution assumes the following conditions:

- 1. Saturated, one-dimensional flow.
- 2. No reaction between solutes and porous medium. Chloride typically behaves this way.

			æ.

3. Diffusion controlled, i.e., the pore water velocity is so low that mechanical mixing is negligible and the dispersion is equal to the effective diffusion coefficient. (this condition is satisfied when K < 1.6E-07.

I ran the program using data for the silty clay layer underlying the Allen Park ClayMine/Landfill. The following values for the input data were used:

The results of the analysis are shown in the attached graph. At a counter hydraulic gradient of -0.3 the exit/source solute concentration ratio does not exceed 0.0001 until 700 years have elapsed. You may recall that a counter hydraulic gradient of -0.3 occurs when the leachate is allowed to rise in the landfill to the ground surface...a worst case scenario. For larger (negative) counter hydraulic gradients the ratios become even smaller. In fact for I < -0.5 (i.e., counter hydraulic gradients larger than 0.5) the ratio C/Co is less than 1.0E-05 at all elapsed times.

These results confirm the findings of my earlier report which were based largely on analogy to solute transport studies in clay aquitards. The present findings are based on analysis of actual soil and site parameters. Keep in mind, also, that the analysis is still quite conservative because it neglects possible adsorption (reaction) of solutes with the clay.

A copy of the computer program and typical output are enclosed. It is written in BASIC and is designed to be run on a personal computer. If you have any questions about the analysis, please feel free to contact me.

Sincerely,

Donald H. Gray

Professor of Civil Engineering

Encl

			:
		•	

••		·			
					į.
			•		

```
run
Porosity: 0.3
Permeability(ft/yg): .025
Diffusion Coef(ft /yr): 0.102
Wall Thickness: 30
Hydraulic Gradient: -0.3
 Time(yrs): 500
 lst Argument(Y1)is:
                                  . 2.9756
. 0.9999
 1st Error Function is:
2nd Argument(Y2)is:
                                    1.22525
2nd Error Function is:
                                    0.9173
Exit/Source Concentration Ratio (C/Co)is:
 Continue Calculations (y/n) ? y
 Time(yrs): 750
                                   2.78685
0.99979
 lst Argument(Y1)is:
 1st Error Function is:
 2nd Argument(Y2)is: '
                                    0.64312
0.63658
 2nd Error Function is:
 Exit/Source Concentration Ratio (C/Co)is:
 Continue Calculations (y/n) ? y
 Time(yrs): 1000
  lst Argument(Y1)is:
                                    2.72291
 1st Error Function is:
                                  0.99973
 2nd Argument(Y2)is:
                                    0.24754
 2nd Error Function is:
                                    0.27399
 Exit/Source Concentration Ratio (C/Co)is:
                                                       3.7E-04
 Continue Calculations (y/n) ? y
 Time(yrs): 2000
 lst Argument(Y1)is:
                                   2.80056
0.9998
 1st Error Function is:
                                    -0.70014
 2nd Argument(Y2)is:
 2nd Error Function is:
                                                       4.2E-04
 Exit/Source Concentration Ratio (C/Co)is:
 Continue Calculations (y/n) ? y
 Time(yrs): 5000
                                      3.43176
  lst Argument(Y1)is:
                                     0.99998
  1st Error Function is:
 2nd Argument(Y2)is:
                                     -2.10334
  2nd Error Function is:
                                                        3.3E-04
  Exit/Source Concentration Ratio (C/Co)is:
  Continue Calculations (y/n) ? n
```

				÷	
			•		

July 1983 KLYORT CONTAINMENT INTECRITY OF ALLEN PARK CLAYMINE LANDFILL

1704 Morton Street Ann Arbor, MI 48104

16 February 1984

MINING PROMUS

Mr. David S. Miller Mining Properties Department 22 FEB 84 8:23 Rouge Steel Company 3001 Miller Road Dearborn, MI 48121

Allen Park Clay Mine/Landfill

Dear Dave:

I have reviewed the memorandum dated January 23, 1984, from Terry McNiel, Technical Services Section, to Larry Aubuchon, Compliance Section, Detroit District, MDNR. The memorandum essentially raises the following objections to the findings and conclusions in my report, viz.,

Objection 1. There is no substantiation nor literature citations to show that organics present in the waste will not increase permeability.

Objection 2. The presence and possible effects of napthalene in the waste are disregarded.

Objection 3. Uncertainties remain about the actual composition and likely nature of the leachate.

Objection 4. The report does not address the question of compatibility between the following:

- a) Leachate and leachate collection system components
- b) Generated gases and clay cap.

In the opinion of the MDNR reviewer Objections 1,2, and 3 taken together mean that Specific Condition 5.A.4 (a) of Act 64 license is not satisfied. The reviewer goes on to say, however, that they (MDNR) would accept compatibility testing between actual leachate being generated and the on-site clay being used for containment. I will respond herein to these stated objections and opinion. Objection 4 which pertains to Specific Condition 5.A.4 (b) and (c) is outside the scope and original charge of my investigation.

Objection 1 is a version of the "guilty until proved innocent" syndrome. I understand and even sympathize with this approach in matters which deal with the release of potentially hazardous substances into the environment. There is, however, considerable substantiation in the published technical literature for the contention that organics present in low concentrations in aequous leachate will not increase the permeability of dense clays.

· •	•	•	
			•
·			

Leachate permeability tests on sand-clay columns packed to bulk densities within the range of densities of natural clays (Cartwright et al., 1977) have shown that permeability actually decreased with passage of leachate (containing organics). tests were continued for periods up to nine months. Decreases were even more pronounced for raw, unsterilized leachate. addition to permeability reduction from the passage of leachate, Griffin and Shimp (1976) have shown that heavy metal ions (Pb, Zn, Cd, Hg) are strongly attenuated by clay. Organics that were present in the leachate were only moderately attenuated by the clay; they did not increase hydraulic conductivity. We have also conducted long term leachate permeability tests ourselves on a silty clay almost identical in composition to the clay underlying the Allen Park Clay Mine/Landfill site (Gray, 1982) and found the same results, i.e., no increase in permeability was observed. A chemical analysis of the leachates used in all these permeability tests is attached. Note the presence of napthalene in one of the leachates -- a constituent whose presence and influence the MDNR reviewer claimed we had not considered. [Note: Cited references are listed in an attachment to this letter report. /

It is important to emphasize again the fact that leachate permeability tests conducted by Anderson (1982) are totaly unrepresentative of conditions at the Allen Park site. These tests are often cited as an example of the deleterious influence of organic solvents on clay liner permeability. Anderson's tests are unrepresentative and irrelevant for the following reasons:

- 1. He used pure organic solvents. The leachate at the Allen Park Clay Mine/Landfill will be an aequous extract containing very low concentrations of organics.
- 2. He forced the solvents through clays at extremely high, positive gradients. Anderson used positive gradients ranging from 60 to 300. At the Allen Park site there will be negative (reverse) gradients ranging on the order of -0.3 (worst case) to -2.7.

Other objections can also be cited in regard to Anderson's test procedures and results. He used a rigid wall permeameter which permits channeling between sample and container. The recommended procedure to avoid this potential problem is to use a flexible, pressurized jacket. Large reported increases in permeability should be viewed with some skepticism when rigid wall permeameters have been employed.

Green et al. (1981) have investigated in great detail the characteristics of organic solvents that affect their rate of movement (permeability) in compacted clay. They measured the equilibrium permeability of three clays (a clay shale, a fire clay, and kaolinite) to the following solvents: benzene, xylene, carbon tetrachloride, trichloroethylene, acetone, methanol, glycerol, and water. Their study showed that it is the hydrophilic or

	**	
	•	
		,
		_
		•

hydrophobic nature of the solvent (as measured by the octanol/water partitioning coefficient or roughly by the dielectric constant) and not the viscosity/density ratio that is important in predicting a solvents rate of flow through clays. According to their findings water, which has a high dielectric constant, always exhibited the highest permeability. In addition, they found that the packed clay density is crucial in determining how permeable a clay will be to a given solvent. At high bulk densities (on the order of 115 pcf or 1.85 g/cc) the solvent characteristics became less important in differentiating permeability response.

Green et al. (1981) also observed that solvents of low dielectric constant (e.g. xylene and carbon tetrachloride) tended to cause shrinkage and cracking of some of the clays. This phenomenon, known as syneresis, can and eventually did cause an apparent permeability increase in some of the clays that were tested. The same phenomenon was reported by Anderson(1982) in some of his experiments. It must be emphasized again, however, that the effect has only been observed and reported when several pore volumes of pure, low-dielectric organic solvents are forced at very high gradients through clay columns. These conditions simply do not occur at the Allen Park Clay Mine/Land-fill site.

On the contrary, the conditions at the Allen Park site are ideal for effective containment, viz.,

- 1. The site is underlain by a thick (X ≥ 25 ft) section
 of dense, competent silty clay (= 115 pcf) with
 a very low hydraulic conductivity (k = 2 x 10 cm/sec)
- 2. A negative hydraulic gradient exists at the site as result of artesian conditions in the underlying aquifer. Even under worst case assumptions (viz., leachate levels rising to the top of the landfill) a negative gradient of -0.3 will still be present.
- 3. The leachate consists of very low concentrations of organic and inorganic solutes in an aqueous solution as opposed to a pure solvent.

Under these conditions advective transport or hydraulic seepage ceases to dominate pollutant movement across a clay barrier (see Gilbert and Cherry, 1983; Tallard, 1984). Instead, diffusion under chemical concentration gradients becomes more important, and it is this transport mechanism that must be evaluated carefully. I have dealt with this problem both in my original report and in my subsequent letter report to Mr. Mark Young, Wayne Disposal, Inc., dated 25 September 1983. I showed that even under worst case assumptions of no partitioning or attenuation of pollutants and minimum, negative hydraulic gradients breakthrought times would be on the order of thousands of years. Interestingly, if the calculations are repeated allowing the

	•	•

hydraulic conductivity or permeability to double or even triple, the breakthrough time increase even more because now the counter advective flow is more effective in opposing the downward diffusion of solutes along their concentration gradient.

I come now to the MDNR comments about requiring compatibility testing (whatever that means) between actual leachate and the clay liner material. Unfortunately, the procedure, rationale, etc. for such tests are not specified. What is being required ...that the leachate be forced under high hydraulic gradients through a thin sample of the silty clay? The results or significance of such a test would be ambiguous at best and meaningless at worst in this case. In my opinion, such tests would be an exercise in futility and irrelevance given the condition and circumstances at the Allen Park Clay Mine/Landfill site.

Breakthrough times in diffusion controlled transport are extremely sensitive to thickness of the barrier. In order to replicate conditions in the field at Allen Park, compatibility or flow tests should be run on a sample column 25 feet high under a negative gradient no less than -0.3. After a wait time of thousands of years such a test would merely confirm what is already demonstrable.

It is my professional opinion that in this instance the requirement for compatibility testing and concern over permeability is a diversion from the real issue which is the likelihood of diffusion transport of solute across the clay. I have shown that this will not be a problem at the Allen Park Clay Mine/ Landfill site because of the thickness, competency, and density of the underlying clay together with the existence of a negative gradient.

I find it baffling that MDNR can approve a thin, clay slurry wall for a toxic waste site (see Consent Judgment, U.S. District Court, U.S. Envl. Protection Agency and The State of Michigan, Plaintiffs, vs. Velsicol Chemical Corp., Defendant) based on meagre and inadequate evaluation whilst insisting on irrelevant tests for a thick, natural clay containment system at Allen Park that is ideal in nearly every respect.

Sincerely,

Touald H. Gray

Donald H. Gray

Professor of Civil Engineering

Attachments

ATTACHMENT NO. 1 - CITED REFERENCES

- Anderson, D. (1982). Does landfill leachate make clay liners more permeable? <u>Civil Engineering</u>, ASCE, Vol. 52, pp. 66-69
- Cartwright, K., Griffin, R.A., and Gilkeson, R.H. Migration of landfill leachate through glacial tills, <u>Groundwater</u>, Vol. 15, No. 4, pp. 294-305
- Gilham, R.W. and Cherry, J.A. (1983). Predictability of solute transport in diffusion-controlled hydrogeologic regimes, Proceedings, Symposium on Low-Level Waste Disposal, U.S. NRC, NUREG/CP-0028, Conf-820911, Vol. 3, pp. 379-410
- Gray, D.H. (1982). Influence of leachate on clay liner permeability, Wayne Disposal landfill site, Report prepared for Wayne Disposal, Inc., September 1982
- Green, W.J., Lee, F.G., and Jones, R.A. (1981). Clay-soils permeability and hazardous waste storage, <u>Journal of WPCF</u>, Vol. 53, No. 8, pp. 1347-1354
- Griffin, R.A. and Shimp, N.F. (1976). Attenuation of pollutants in municipal landfill leachate by clay minerals, Cincinnati Ohio: Final Report for U.S. Envl Protection Agency, Contract 68-03-0211
- Tallard, G. (1984). Slurry trenches for containing hazardous wastes, <u>Civil Engineering</u>, ASCE, Vol. 54, No. 2, pp. 41-45

ATTACHMENT NO 2

Table 2. Chemical Analysis of Landfill Leachates

A = 0 3 = 0 4 =	DuPage County	Wayne Disposal
Analysis	Landfill-mg/1	Landfill-mg/l
Na	748	3400
K	501	. ças
Ca	47	46
Mg	233	370
Cu	<0.1	0.55
Ζn	18.8	5.0
PЪ	4.46	0.91
Cd	1.95	0.10
Ni	0.3	0.40
Hg	0.0008	0.010
Cr	<0.1	0.31
Fe	4.2	7.77
Mn	<0.1	-
A1	<0.1	,
NH ₄	862	1540
As	0.11	0.0044
В	29.9	<0.005
Si	14.9	423
C1	3484	5800
SO 4	<0.1	200
_N03		<0.1
HCO3		6920
COD	1340	2160
TOC	-	2500
TSS		512
pН	6.9	7.6
Spec. Cond. (mmhos/cm)	10.2	28.0
Equiv. TDS	6528	17,920
Organics:		
organic acids (phenol)	0.3	3.6
toluene		0.45
napthalene	405 -	0.44
chlorobenzene		0.008

•			
			•
		·	

L. 11. MILLER & ASSOC! ES

n' 9 : i i

2500 PACKARD RO., SUITE \$106 ANN ARBOR, MICHIGAN 48104

June 17, 1982

Rouge Steel Company
Division of Mining Properties
3001 Miller Road
P.O. Box 1699
Dearbor, Mi 48121

Attention: Mr. David Miller

Re: Allen Park Clay Mine Seismic Survey

Dear Mr. Miller:

As per your request a seismic study was performed at the Allen Park Clay Mine area in Allen Park, Michigan. The purpose of this study was an attempt to determine the depth to bedrock in the area immediately below the excavated pit at the disposal area.

Keeping consistent with previous seismic work accomplished in the area these stations were numbered 4, 5 and 6. Stations 4 and 5 were completed on the excavated pit floor, 4 being on the eastern half and 5 on the western side of the pit floor, with station 6 directly to the north of the pit up on approximately the existing surface elevation, some 30 to 40 feet above the pit floor. Plots of the data collected are included and indicate both the velocities of the layers and the depths to the layer interfaces.

Station 4 resulted in the best data collected at the site, and shows a three-layer case. A low velocity (1428 ft/sec) layer is underlain by a very consistent layer with a velocity of 5233 ft/sec, extending to a depth of 57 feet below the pit floor where it is underlain by a much higher velocity (12,808 ft/sec) layer. These values are very typical of a dense clay layer underlain by a hard limestone type material. The rather good fit of the data to a line would indicate very consistent materials, however, the irregularities near the 57 foot contact indicate that this interface is not as sharp a transition and hence it represents more of a minimum depth to this interface.

At Station 5 area surface topography was rough and inconsistent which resulted in limited data being collected. In one area a very steep depression was encountered on the surface which the shock wave source worked in. This abrupt lowering of the elevation causes a decrease in the time it takes to the shock wave to travel through the subsurface. Therefore, the best fit line was drawn through only those points where the shock wave source was at the approximate same elevation. Had the elevation been consistent, the travel times for those distances, which were lower, would have been increased in the direction towards this line.

			•	
				•

Druge Steel Company Cleby 17, 1982 Prige 2, 1982

Station 5 showed approximately the same subsurface conditions as did 4, with a depth to the bedrock being indicated at 70 feet below the pit floor. Station 6 was run at a much higher elevation than that of the pit floor, and very soft wet surface conditions were found. These types of surface conditions do not allow for seismic shock waves to propogate as the material tends to absorb much of the energy and transmit this energy directly across the surface rather than down into the earth. This data indicates again a rather consistent layer with a velocity typical of a dense clay. As a rule of thumb, seismic tests measure in depth roughly one-third the distance from the energy source to the geophone. Using this rule the limits of our data would be to a depth of approximately 45 feet for the clay layer and would obviously extend until the next layer is encountered.

We hope that this information is useful to you. If any further information on subsurface conditions is needed, it should be noted that there is enough room in the bottom of the excavated pit for an electrical resistivity test to be run. The problems caused by surface conditions could be avoided and with the large contrast in the subsurface materials this test would most likely work well.

If we can be of any further assistance, please let us know.

Very truly yours,

L. M. MILLER & ASSOCIATES

Timothy P. Wilson, Geologist

TPW:hrh

Attachments as mentioned above.

	 •	
		and the second second
	•	

-		•	•	
		¢į		
				•

ALLEN PARK CLAY MINE SELSMIC STATION #5

•			

S

N

ľ

	•		

MICHIGAN TESTING ENGINEERS,

24355 CAPITOL AVENUE . DETROIT, MICHIGAN 48239 PHONE: (313) 255-4200

SOILS EXPLORATIONS AND FOUNDATION ENGINEERING MATERIALS TESTING AND INSPECTION NON-DESTRUCTIVE TESTING and MATERIALS EVALUATION

June 25, 1982

Michigan Department of Natural Resources Resource Recovery Division P.O. Box 30028

Lansing, Michigan 48909

Mr. James Janiczek Attn:

Subject: Allen Park Clay Mine

Allen Park, Michigan MTE File #406-15046

Gentlemen:

As requested, we have reviewed the above referenced file to determine the degree of saturation of the subsoils on the site.

The following basic soil relationships were used in this review:

$$s = \frac{wGs}{e}$$

$$e = \frac{Gs}{rd} - 1$$

$$W = W_W = W_S$$

Where: s = degree of saturation (%)

w = moisture content of soil (%)

e = void ratio

 W_W = weight of water

Ws = weight of solids

Vd = dry unit weight of soil

Gs = specific gravity of solids (assumed to be 2.65 to 2.68)

Utilizing these procedures, our calculations indicate the gray silty clays on the Allen Park Clay Mine to be 100% saturated.

	•		
			ur Ali "
			" Maken
			anda" "
			war."
			um"
			mge"
			uge"
			mge"
			mgi"
			mgr.
			mgr.
			mg"
			uge"
			uge"
			uge"
			mg."

Mr. James Janiczek

2

June 25, 1982

If there are any questions, please do not hesitate to call.

Very truly yours,

MICHIGAN TESTING ENGINEERS, INC.

andall DeRuiter

RD/ksb

cc: D. Miller, Ford Motor Company W. Tomyn, Wayne Disposal

		-20.

MATAÌSAT MESAURCES CRIMISSION

JACTOR & THE FFT F ME LAY AN A PRIVATE OF THE TEXT OF THE TEXT OF THE TEXT OF THE TEXT OF THE THE THE TEXT OF T

WILLIAM G MILLIKEN, GOVERNOR

DEPARTMENT OF NATURAL RESOURCES

. HOWARD A TANNER, Director

November 4, 1981

EXHIBIT G

RESOURCE RECOVERY COMMISSION

THEMAS J BLESSING JA ALBERT M HEMINIA AND FRHINGS C ERREST REMP JOHN W LAYMAN CLIFEDRO MEES STUART B PAONOS ROGER RASMUSSEN JAMES STORNANT MICHAEL L WALKINGTON

RESOURCE RECOVERY DIVISION

PO BOX 30028 LANSING MI 48303

ADMINISTRATION/RESOURCE RECOVERY SECTION

517/373 0540

PLANNING SECTION/ HAZARDOUS WASTE SECTION

517/373-1818 GEOLOGY SECTION 517/373-0907

Mr. Marshall Austin Michigan Testing Engineers, Inc. 24355 Capitol Avenue Detroit, Michigan 48239

RE: Permeability testing of clay soils
Allen Park Clay Mine; Allen Park, Michigan
Wayne County

Dear Marshall:

Based on the review of the soil tests performed (grain size analysis, atterberg limits and permeability) on the clay at the Allen Park Clay Mine Landfill, it is the feeling of this office that the materials are uniform enough that no further permeability testing will be required. This portion of our evaluation has been satisfied with the information submitted.

If you have any questions, please feel free to call.

Very truly yours,

RESOURCE RECOVERY DIVISION

James Janiczej

Geologist

JJ:nm

cc: Shakir/Belobraidich
Mark Young, Wayne Disposal
Wayne County Health Department

 \mathbf{V}

		,
		Miles
		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
		· • • • • • • • • • • • • • • • • • • •
		· • • • • • • • • • • • • • • • • • • •
		· • • • • • • • • • • • • • • • • • • •

E-2 Interim Status Groundwater Monitoring Data 40 CFR 270.14(c)(1), 40 CFR 265.90 40 CFR 265.94

During the facility's initial year of Interim Status (November 1980 - November 1981), a hydrogeological study was performed on the site which included the installation of five monitor wells in satisfaction of Federal and State regulations. Quarterly samples were then taken to provide initial background data, while at the same time additional information was being obtained to demonstrate that there is no potential for migration of liquid from the regulated unit to the uppermost aquifer during the active life of the unit.

Groundwater monitoring data obtained during Interim Status is provided in Attachment 16. The data is grouped as follows:

page <u>226</u>

Drinking Water Standards Appendix III page 212

Contamination Indicating Parameters page 221

. Additional Water Quality Parameters

·		
		·

Allen Park Clay Mine

Ground Water Monitoring Data

Drinking Water and Water Quality Parameters

Well: 2-D Down Gradient

	Date Sampled:	US+1¶-81
Parameter	Unats	
Static	Feet	600.67
Ar senic	mg/l	(0.0003
Banzer	My/3	(0.106
Cadmium	my/l	0.240
Chromium	mg/l	(0.010
Fluoride	My / 1	0.946
Lead	mg/l	< 0 . 050
Hercury	mg/l	€0.0002
Nitrate	mg/1 '	(0.100
Selenium	my/l	(0.0083
Silver	My/1	CO.018
Endrin	ug/l	(6.0002
Lincane	ug/1	CO.884
Methoxycher	ug/1	<0.018
Toxaphene	⊌ g /l -	(0.005
2,4-D	ug/l	(0.100
2,4,5-16/511	vez ug/l	<0.001
g sq i aw	p[1/1	(5.88
Gross Alpha	pC1/	(5.00
Greis Beie	pC1/1	(5.60
Caliform Bec	t. ce/10uml	2.00
Chleride	mg/l	158.
Iron	my/l	. (0.030
Basnegiish	mg/l	(0.018
Phenels	mg/1	9.008
Sediem	mg/l	110.
Sulfate	mg/l	1050

Time of Execution: 86/18/84 1510.9 out Hon

			. *	
				,

Allen Park Clay Mine
Ground Water No. itering Data

Drinking Mater and Mater Quality Parameters

Well: 2-D Dcan Gradieni

Date Sampled: 05-06-82 07-14-82 18-26 82

Parameter	Units			
Static	Feet	599 01	600,68	600. გა
Arsenic	mg/I	(0.010	(0.001	< 0.001
Barlum	mg/l	(0.648	(0.020	CB.100
Cadmine	mg/l	0.623	∄.0ນວ	(0,063
Chronium	mg/l	0.050	0.011	0.016
Fluoride	mg/1	0.800	0.800	0.900
Lead	mg/l	0.093	0.030	(6,010
Mencony	mg/l	(0.0002	(0.0002	00.0002
Nitrate	my/l	(0.01 0	0.010	C0.010
Selenium	mg/l	(0.010	(8.010	44.016
Silver	mg/l	0.018	0 044	8.00៩
Endrin	ug/1	(0.100	(# . 1 0 ü	(8.1Qu
Lindane	eg/1	(0.100	(0.100	KB. LOU
Methoxychor	eg/1	(0.500	(0.500	(8 500
Toxaphene	ug/l	< 1 66	(1.00	(1.00
2,4-D	ug/1	(0,108	(0.100	(6.1 00
2,4,5-TP/Silvex	ug/l	₹ē.050	(8.050	(0.050
Radium	pui/l	(5.08	(5.00	(5 00
Gross Alpha	pC1/1	(5.00	(5.0ú	(5.0u
Gross Beta	pCi/l	(4.08	⟨8.80	(H.U0
Coliform Bact,	ce/:80ml	(2.00	(4.80	€2.2#
Chloride	mg/l	178.	170.	170.
Iron .	my/l	5,11	8.84u	0.458
Manganese	mg/l	0.130	1.023	0.024
Phenels	mg/l	0.004	(9.004	(6,004
Sodium	mg/l	120.	110.	240
Sulfate	mg/l	870.	1000.	ង់ដឋ.

Time of Execution: 06/18/84 1510.0 edi mon

		, ⁵ .
		:

Allen Park Clay Mine

Greend Water Menitering Data

Drinking Water and Water Quality Parameters

Well: 5-D Up Gradient

	Date Sampled:	05-06-82	07-14-82	10-26-82
Peremeter	Unuts			
Static	Feet	605.12	685.45	504.54
Arsenic	ħg/l	(0 010	(0.001	(8,861
Ber 1 um	mg/l	0.060	(8.020	CS. O%O
Cadmium	mg/l	aù0.0	(0.603	(0 003
Chromium	mg/l	(0.005	9.015	ù.U.Y
Fluoriae	mg/l	1.30	1.00	1 . 0 u
Lead	#uj/1	0.010	(0.010	B 0 7 1
Mercury	mg/l	(8.0002	0.0035	្សាប់បាន
Mitrate	mg/l	0.016	0.35ü	(# 616
Setentun	mg/1	(0.010	18.010	(0.010
S.lve	mg/l	Eu8.0	(6.003	(0 605
Endrin	u g /1	(0.186	(Ð. 1ườ	(4.100
Lindane	ug/i	(0.100	(0.100	(# 100
Methoxychur	ug/l	(0.540	₹0.500	(0.56)
Toxapheae	ug/l	(1.00	(1.00	(téb
2,4-D	⊎g/l	(0.10₽	(0.100	₹6.100
2,4,5-TP/Sil	ver ug/l	(0.050	(8,050	(0. 050
Redium	p(1/1	(2.88	(5.0⊍	(5.00
Cross Alpha	pC1/1	(5.00	(5.00	(5.00
Gross Beta	pC1/1	(4.00	(4.00	(8 66
Coliform Bac	t. ce/180ml	(2.00	(4.00	4.00
Chloride	my/l	140.	150,	140:
Iron	₩Ų/]	1.78	1.20	ប្រុស្និត
Manganese	mg/1	0.023	a10.0	0. ບ ມສ່
Phenois	mg/l	(0.004	(8.064	(\$.0u4
Sedium	mg/l	9 5.\$	86.0	180.
Sulface	mg/1	190.	200.	7 d . u

Time of Execution: 06/18/84 1510.0 edt Man

		,

Allen Park Clay Mine
Ground Water Monitoring Data
Drinking Water and Water Quality Parameters

well: 102-D Down GraDient

	Date Samples:	08-18-81
Parameter	Units	
Static	Feet	603.22
Arsenic	mg/l	(0.00ū3
Barium	mg/1	(0.100
Cadmiem	my/l	(0.010
Chremium	eg/l	<0.010
Fluoride	eg/l	1 - 42
Leag	mg/l	€0.050
Mercury	mg/1	(0.0002
Hitrate	mg/1	€0.160
Selenium	ng /).	(0.0003
Silver	mg·l	₹0.616
Endrin	υ ς ./1	(0.0002
Lincane	ug/l	CO:064
hetnezychor	ug/i	⟨0.010
Тохарпене	uy l	cu 005
2,4-D	ug/l	⟨0.180
2,4,5-TP/Sil	vex ug/l	(B . 0 01
Radium	pt1/1	(5.80
Gross Aipha	pCi/l	(5.8i
Gross Beta	pC1/1	(5.00
Coliferm Bac	t. co/100ml	4.00
Chloride	mg/l	138
Iron	my/1	(0.036
Manganese	mg/l	(0.018
Phenols	my/l	€0.005
Sedium	my/l	100.
Sulfate	mg/l	1200.

Time of Execution: 06/18/84 1510.0 edt hom

•			
	,		
			:

Allen Park Clay Mine

Ground Water Monitoring Data

Drinking Water and Water Quality Parameters

Well: 102-D Down GraDient

Date Sampled: 05-06-82 07-14-62 10-26-02

		V- V- V-		
Parameter	Units			
Static	Feet	601.77	601.68	599.15
Arsenic	mg/l	(0.019	(8.501	<0.001
fer)un	my/1	(0,840	(0.020	(0.100
Cadrium	mg/l	G . Q ü 6	د با 🛈 ، 🛈)	(0).000
Chramium	mg/l	(0.005	8 .006	ម.0∪៦
Flueride	mg/1	1.30	1.00	1.00
Leac	mg/1	9.010	(0.010	6.010
Mercury	mg/l	(0.0002	(0.0u02	(0. 1 002
Nitrate	ag/l	(0.010	€.27u	(8.010
Selerium	mg/1	(0.015	(8 01 U	(0.010
Silver	mg/1	0.002	8 0 ∪ 4	دان تا 🐧
Endrin	ug/l	€0.100	(0.100	< 0. ៤០៦
Lindane	ug/l	€0.100	(8.100	(0 100
Methexycher	ug/l	(0.059	(1.500	(0.500
Tosaphene	ug/1	€1.00	(1.00	(1.00
2,4-0	ug/1	(0.108	(8.100	(0.100
2,4,5-TF/Silvex	ug/l	8.050	(8.050	(O.O50
Rad:en	pi1/1	(5.08	(5.00	(5.00
Gross nights	pC1/1	(5.00	(5.00	(5.00
Gross Beta	pC:/l	(B.66	(4.Bu	(6,80
Coliform Bact.	co/160ml	(2.00	(4.80	(2.20
Chieride	mg/l	148.	140.	140.
Iren	mg/l	0.530	5.10	1.20
Mançanese	Ag/l	8.023	8.041	0.016
Phenels	mg/ì	(0.004	(B.OU4	(8.044
Sodien	mg/l	95.8	97.0	200.
Su.fate	mg/l	910.	960.	810.

Time of Execution: 05/18/84 1510.0 ed t Mon

	•	·-	
			. ••
			. ••
			, +*
			. **
			. et
			, er
			, et
			, er

Allen Park Clay Mine

Ground Mater Monitoring Da a

Drinking Mater and Mater Quality Farameters:

Mell: 103-D Down Gragient

Date Sampled: 08-18-81

Parameter	Un 115	
Static	Feet	603.52
Arsenic	my/l	(0.0063
ber 1 um	mg/l	€0.109
Cagnium	mg l	<0.018
Chronium	mų.'l	(0.018
Fluoride	my/1	1.31
Lead	mg/l	(0.050
Hercury	mg/i	(0.0062
Nitrate	mg/l	CO.100
Selenium	mg/1	(0.0u03
Silver	mg/1	<0.018
Endrin	ug/l	(0.0062
Lindane	ug/l	€0,004
Methoxychor	wg/1	€0.810
Teraphene	ug / 1	(0.005
2,4-D	ug/l	(0,100
2,4,5-TP/Silvex	ug/l	(0.081
Redium	p=1/1	(5.00
Gross Alpha	pC1/1	(5.98
Gross Beta	pCi/l	(5.00
Coliform Bact	ce/106ml	(2.00
Chloride	mg /1	25.8
Iren	mg/l	< U . 630
Hanganese	mg/1	(0.010
Phenois	my/l	(0.005
Sodium	mg/1	6.69
Sulfate	mg/l	46.9

Time of Execution: 0m/18/84 1510.0 edt hon

	•		
			et e

Allen Park Clay Mine

Greend Water Monitoring Data

Drinking Water and Water Quality Parameters

Well: 103-D Down Gradient

! -	Date Sampled:	05-06-82	97-14-8 <i>2</i>	10-26-02
Parameter	Units			
Static	Feet	a03.65	601.23	o01.2s
Arsenic	#g/l	€0.061	(Ú. 8úl	CO. 0 u 1
Berlum	mg/l	<0.820	(0.020	(6.200
Cadmium	mg/l	0.007	9.00b	¢û.0u3
Chramium	m g/l	0.020	(0.004	(4.005
Fluerice	mg/l	1.50	1.00	1.00
Leas	mg/1	€0,010	(0.010	(0.010
Rescury	mg/l	(0,0002	(0.0002	<0.0000
Nitrate	mg/1	€0.016	0.05U	<0.0;0
Selenium	ag/1	€0.010	(6.01U	< 6 Q1U
Silver	my/1	0.095	1.005	6.667
Endrin	ug/1	⟨0.109	(8 190	€#.100
Lincane	ug/l	€0.100	(#.10 u	(8.10J
Hethoxycnor	#g/1	(0.500	(0.500	(0.504
Toxaphene	ug/ 1	(1.00	(1.00	(1.00
2,4-D	ug/l	(8.108	(8.100	(0.100
2,4,5-TP/Sile	ver ug/l	€4.050	(8.050	(0 .050
Radlum	pCi/l	(2.00	(5.0)	(5.00
Gross Alpha	pC1/1	(3.08	(5.00	(5.00
Gross Beta	pE1/1	44.80	(4.0U	(8.00
Coliform Bac	t. ce/100ml	(2.00	(4,60	5.16
Chloride	mg/l	130.	140.	130.
Iran	mų∕l	1.00	8.90Ú	6.04
Manganese	mg/l	0.023	6.018	7د 0 . 0
Phenois	mg/1	(U.004	0.006	(8.0u4
Sedium	mų/l	8.70	85.0	160.
Sulfate	mg/l	760.	790.	840.

Time of Execution: 86/18/84 1510.0 odt Mon

Allen Park Clay Hine
Ground Water Hunitering Data
Drinking Water and Water Quality Parameters

Well: 104-D Duwn Gradient

De te	s Sampled.	08-10-61
Parameter	Units	
Static	Feet	603.B1
Arsenic	my/1	(0.00û3
Barium	mg/1	.0.100
Cadmium	my/l	€0.010
Chromium	mg/l	(0.010
Fluoride	ag∕l	1.31
Lead	my/l	(0.050
Hercury	mg/1	(0.0002
Nitrate	mg/l	<0.186
Selenium	mg/1	(0.0003
Silver	mg/1	(0.018
Endria	ug/l	(0 0002
Lindane	ug/1	(0 094
hethoxychor	wg/1	<0.010
Toxaphene	ug/1	(0.005
2,4-D	ug/1	(0.100
2,4,5-TP/Silvex	ug/l	(8.D01
Redium	pC1/1	(5.88
Gross Alpha	pC1/1	(5.00
Gress Reta	pC1/1	(5.00
Coliform Bect.	ce/100ml	4.00
Chloride	mg/1	140.
Iron	mg/l	(u . 830
Menganese	mg/1	0.068
Phenols	mg/l	(0.005
Sodium	mg/l	169.
Sulfate	mg/l	1350.

Tree of Execution: 00/18/64 15(0.0 edt Mon

		,

Allen Park Clay Mine

Ground Water Monitoring Data

Drinking Water and Water Quality Perameters

Well: 184-D Down Gradient

	Date Sampled:	05-06-82	07-14-82	18 26-82
Parameter	Units			
Static	Feet	604.32	604.32	604.1.2
Arsenic	$m_{\mathcal{G}}/1$	(0,001	(8.010	(0.0u1
barium	my/l	(û.04u	(0.024	(8 100
Cadmium	mg/1	0.010	د ۵ (۵ (((((((((((((((((8,005
Chremium	my/l	(0.005	0.012	0.013
Fluoride	mg/l	1.00	0.90U	1.08
Lead	m q/1	(0 018	(\$.01U	0.0∠∪
Mercury	mg/1	(0.0002	(8 GUL	< 0.000.
hitrate	mg/1	(0,010	1 230	0.25u
Seleniva	#G/1	(0.010	1.010	(6,3)
Silver	mg/l	0 009	8.834	0.01.
Endrin	⊌g/l	(Ð.16ú	(0.100	(8 100
Lindane	ug/1	(0.100	(0.10u	(\$.1uu
Methoxychor	#g/l	(0.500	(0.500	(0.500
Toxaphene	ug/1	(1.00	(1.00	(1.00
2,4-D	ug/l	(D.199	(B.10B	(8.10 U
2,4,5-TP/Si	lvex ug/l	<0.050	(8.050	(0.050
Radium	pC1/1	. (5.80	(5. 0 u	(5.06
Gross Alpha	pCi/1	(3.00	(3,90	(5 00
Gress Beta	pCı/l	(4.00	(4.80	11.0
Coliform Ba	c1. ce/100ml	(2.00	8.00	9.20
Chloride	mg/l	150.	160.	1 4 U .
Iren	my/l	4.30	9,90	52.0
Manganese	mg/1	0.068	8.042	0.100
Phenels	mg/1	(8,004	(8.004	(8.QU4

Time of Execution: 05/18/84 1510 0 edit Mon

100.

1200.

88.0

1300

mg/l

mg/l

Sodium

Sulfate

210

1200.

Table 2

Allen Park Clay Mine

Ground Water Monitoring Data

Contamination Indicating Parameters

Well: 2-D Down Gradient

		* * Well	Background	Sampling	Dátá # #
Date	Sampled:	08-10-81	05-06-82	07-14-82	10-26-82
Paraneter	Units				
Static	Fe∈t	600.67	599.01	600.68	600.68
pH1 pH2 pH3 pH4 Number of Mean Valu Variance	Samples e	7.70 7.90 8.00 8.00 7.90 2.00E-02	6.95 7.01 7.09	7.76 7.73 7.76 4 7.75	8.70 8.70 9.70 4 8.70
Sp.Cond2 Sp.Cond3 Sp.Cond4 Number of	umhos/cm _wmhes/cm umhos/cm Samples	2200. 2400. 2200. 4	2127.	2983. 2980. 2975. 4	2244. 2252. 2250. 4
TOC1 TOC2 TOC3 TOC4 Number of	mg/l mg/l mg/l mg/l Samples	7.70 7.00 7.70 7.60 7.50	20.0 20.0 19.0 19.0	3.00 5.00 5.00 5.00 4.50	15.0 20.0 17.0 16.0 4 17.00 4.67E+00
TOX3 TOX4	mg/l mg/l mg/l mg/l F Samples we	(0,00; (0,00; (0,00;	5 0,016 5 0.015 5 0.014	0.046 0.027 4 0.034	0.017 0.076 0.038 4 0.033

Summary of Background Data

Parameter	Mean Value	Variance	Number of Samples
рн:	7.84	3.98E-01	16
Sp.Cend:	2430.5	1.15E+05	16
10 C:	12.13	4.33E+01	16
TOX:	0.019	1.64E-04	16

Time of Execution: 02/23/83 0730.2 est Wed

		,

Table 2 (Cont.) Allen Park Clay Mine

Ground Water Monitoring Data

Contamination Indicating Parameters

Well: 102-D Down GraDient

		# # Well	Background	Sampling	Data * *
Date	Sampled:	08-10-61	05-06-82	07-14-82	10-26-82
Parameter	Units				
Static	Feet	603.22	601.77	601.68	599.15
рН1 9H2 9H3		8,40	7.30 7.30 7.30	7,20 7,20 7,20	8.70 8.70 8.70
pH4 Number of Mean Value	-	1 8.40 0.00E+u0	7.30		8.70
Sp.Cond1 Sp.Cond2	umhos/cm	2500.	2993. 2997.	2574. 2664.	2392 . 2398 .
Sp.Cond3 Sp.Cond4 Number of Mean Valu	untios/cm Samples		2975.8		2378. 4 2381.5
Variance		0.00€+00		4.06E+03	
TOC2	mg/l mg/l mg/l mg/l	5.60	9.00 12.0 11.0 13.0	21.0 15.0 17.0 19.0	24.0 23.0
Number of Mean Valu Variance	Samples	។ ១.४(0.00E+0	11.25	18.00	19.75
TOX1 TOX2 TOX3 TOX4	mg/l mg/l mg/l mg/l	0 .008	0.011 0.006 0.006 0.007	0.035 0.016 0.016 0.016	0.016
Number of Mean Valu Variance	Samples	0.00 0.00E+0	8 0.008	0.014	6 0.014

Summary of Background Data

Parameter	Mean Value	Variance	Number of Samples
pHs	7.79	4.94E-01	13
Sp.Cend:	2646.0	6.29E+04	13
TOC:	15.51	2.94E+01	13
TOX:	0.812	5.716-85	13

Time of Execution: 82/23/83 0730.2 est Wed

•	·	•	

Table 2 (Cont.) Allen Park Clay Mine

A CAR A MILE

Ground Water Monitoring Duta

Contamination Indicating Parameters

Well: 103-D Down Gradient

		# # Well	l Background	Sampling	Data # #
Date	Sampled:	08-10-8	05-06-82	07-14-82	10-26-82
Parameter	Units				
Static	Feet	603.52	2 603.65	601.23	601.26
pH1 pH2 pH3 pH4 Number of	Samples	8.40	7.09 7.11 7.12	7.70 7.70 7.70 7.70	8.76 8.70 8.76 8.70
Mean Valu Variance	.	8.60 0.00£+00	7.09	7.70 0.00E+00	8.70 0.0uE+00
Sp.Cond1 Sp.Cond2 Sp.Cond3 Sp.Cond4 Number of Mean Value Variance	umhos/cm umhos/cm umhos/cm Samples	300. 300.0 0.00E+00	2604, 2563, 2616, 4 2606,3		2352. 2308. 2294. 2288. 4 2310.5 8.36F+02
TOC1 TOC2 TOC3 TOC4 Number of Mean Value Variance		5.60 5.50 8.00E+00	5.00 6.00 6.00 4 1 5.25	12.0 14.0 14.0 9.00 4 12.25 5.58E+00	26.0 21.0 22.0 21.0 4 22.50 5.678+00
TOX1 TOX2 TOX3 TOX4 Number of Hean Value Variance	,	0.029 0.029 0.029	(0.005 (0.005 (0.005 1 4 7 0.005	0.010 0.054 0.010 0.010 4 0.021 4.84E-04	0.010 0.010 0.014 (0.010 4 0.011 4.00F-06

Summary of Background Data

Parameter	Mean Value	Variance	Number of Samples
рΗ:	7.89	4.89E-01	13
Sp.Cond:	2289.5	3.72F+05	13
TOC:	12.74	5.78E+01	13
TCX.	0.014	1.87E-04	13

Time of Execution: 02/23/63 0749.7 est Wed

	****	**		\ -	
		· ·			
					i
					Ì
	•				
•					
			·		

Table 2 (Cont.)

Allen Park Clay Mine

Ground Water Monatoring Duta

Contamination Indicating Parameters

Well: 104-D Down Gradient

e # Well Background Sampling Data #

Date Sampled: 08-10-81 05-06-82 07-14-82 10-26-82

Parameter	じれょすら				
Static	Feet	603.81	604.33	604.32	604.12
oH1		8.00	6.89	7.78	8.30
2Hq			6.90	7.68	8.20
рНЗ			6.91	7.68	8,20
pH4			6.90	7.67	8.20
Number of	Samples	1	4	4	4
Mean Valu		8,00	6. 91	7.68	· 8.23
Variance		0.00E+00	6.61E-05	1.588-04	2.50E-03
Sp.Cond1	umbos/cm	2550.	1980.	2817	2698
Sp.Cond2			1968.	2885.	2 862.
	umhos/cm		1980.	2685.	2639
	umhos/cm		19 20.	2852、	2871.
Number of	Samples	1	4	4	4
Mean Valu	e	2550 0	1960 0		
Variance		0.00E+00	8.00E+02	1.05E+03	6.14E+02
TOC1	mg/1	6.60	7.00	6.00	11.0
1002	mg/l		10.0	12.0	15.0
TOC3	mg/l		8.00	14.0	10.0
TOC4	mg/1		គ.0៦	12.0	12.0
	Samples	1	4	4	4
Mean Valu		6,60	8.25		12.00
Variance		0.00E+00	1,58E+00	1.20E+01	4.67E+00
TOXI	mg/l	(0.005	(0.005	0.010	0.024
TOX2	mq/l		(0,005	0.024	
TOX3	mq/1		(0.005	0.010	
TOX4	mg/1		(0.005	0.048	0.020
	f Samples	1	4	_	
Rean Val		0.005	0.005		
Variance		0.00E+00	0.G0E+00	3.21E-04	3.478-05

Summary of Background Data

Parameter	Mean Value	Variance	Number of Samples
рĤ:	7.63	3.09E-01	13
Sp.Cond:	2561.4	1.82F+05	13
TOC:	10.12	8.20E+00	13
TQXI	0.015	1.558-04	13

Time of Execution: 02/23/83 0730.2 est Wed

•		

Table 2 (Cont.)

Allen Park Clay Mine

Ground Water Monitoring Data

Contamination Indicating Parameters

Well: 5-D Up Gradient

e e well because semuling beta e e

Date Samples: 96-18-81 85-84-82 97-14-82 10-34-82

Facaneter	Units				
5.4116	řeet	685.89	605.12	48 5.45	604.64
មករ		7.68	7.36	7.44	
uril			7.26		16.3
ari3			7.31		10.2
uh 4			7.32	7 60	15.2
Humber of	54RU185	1	,.52	/.eu	15.2
Heat Valu	&	Ť. £ů	7. ن	フ . 55	44
Ast Fauce		0.00=00	3 58E-44		
			J. 00E - 14	1.432-02	8.00∈່≁ເມີ
Su Cand I	PRROS/CA	:55¢.	2150.	1998.	45
ລິລເຄວີ. de	UMITUS/CA		2107	1916.	17Œ.
8503. uB	IRNOS/LR		2121	1715	1830.
Sp. Louis 4	URI.UL/CR		2100.		1791.
ಶಾಭಿಸಿದ್ದಾಗಿ ಕ್ರಮಿಕ್ಸ್	SARPIES	i	4	175-	1800.
heat Valu	8	ة. فقتة	2125.0	,	4
Variance		8 002-00	Election Electron	1756.3	1859.0
		0.002 00	0.77EYUZ	7.202+02	1.175+63
7051	Mg/1	- 81	6.86		
TOLL	Ru/l		5.80	21.0	21.0
Tüüü	8g/1		5.80		20.1
: 14 4	A4/1		6.80		9. ĉû
HERUEL OF		i	0.80 4	26. y	33.6
Ruan Valu		9.80	5.58	4	4
Val 1811CB		0.002+38		19.25	20.75
		0.002708	3,33E-01	2 252+00	9.63c+01
10X1	AU/l		3.986		_
TOXE .	Mg/l		·	9.064	6.021
TOX3	My/l		0.016		6.841
TOX4	RU/ L		0.009 0.008	8.024	0.025
Hember of	Samples	٥	U. #DS	8.02£	0.632
Maran Value		•	9 .005	4	4
Variance	-		2 925-86		
			6 765-86	3.48£-64	7.692-85

Summary of Background Data

Parameter	Main Value	Variance	Romer of lameles
pri:	8 . 45	1.842+88	13
Sp. Cand:	1929.8	3.81E+04	13
TGC:	14.69	7.4(2+6)	1.5
: AO :	ر ي د ال	2.752-64	2

Allen Park Clay Mine.

Ground Water Monitoring Data

Additional Water Quality Parameters

Well: 2-D Down Gradient

Date Sampled: 08-1	8-81
--------------------	------

Parameter	Units	
Static	Feet	600.67
COD	my/1	2.00
Iron	mg/l	(0.030
Chloride	mg/l	150
Sulfare	mg/l	1050.
Sp. Conauctance	umhos/cm	2500.
Sp. Conductance	umhas/cm	2400.
Sp. Conductance	umhos/cm '	2200.
Sp. Conductance	umhes/cm	2200.
pH 1		7.70
рн 2		8.00
рн 3		7.90
рн 4		8.00
TOC 1	mg/1	7.70
TOC 2	mg/l	7.88
TOC 3	mg/1	7 78
TOC 4	mg/l	7.68
Calcium	mg/l	208.
Sodium	mg/l	110.
Magnesium	mg/l	168.
Bicarbonate	mg/l	200.
Ammonia-Nitragen	mg/l	0.500
Nitrogen-Witrate	mg/l	(0.100
Nitregen-Nitrite	mg/l	0.002
Phenels	mg/l	0.068
Chromium	mg/l	(0.018
Cadmium	mg/l	0.248
Lead	mg/l	(0.850
Napthalene	mg/1	

		,

Allen Park Clay Mine Ground Mater Monitoring Data Additional Mater Quality Parameters

well: 2-D Down Gradiens

Date Sampled: 05-06-82 07-14-82 10-26-82

		02-08-82	₩/-14-b:	10-50-87
Perèneter	Units			
Stetic	Feet	599.01	63.006	H4.006
COD	mg/l			
Iron	mg/l	5.10	₽.84u	0.450
Chloride	mg/l	150.	170.	170.
Sulface	my/l	1050.	1600.	Ե ԵՍ.
Sp. Conductance	umhus/Cm	2295.	3054.	2256.
Sp. Conductance	UMNUS (M	2085.	2983.	2244.
Sp. Conductance	umhas/cm	2187.	2980.	2262
Sp Conductance	ymhas/cm	2127.	2875 .	2050
pri 1		6.91	7.75	8 70
pH 2		6.95	7.76	8 70
ph 3		7.01	7.73	8 74
рн 4		7.09	7.70	6.70
TOC 1	mg/1	20.4	3.00	15.0
TOC 2	mg/l	20.	5.00	20.0
TGC 3	my. 1	19.6	ង.មិន	17.8
TOC 4	mg/l	19.0	5.00	16.0
Calcium	mg/l			
Sodium	mg/l	128.	110,	240.
Hagnesiem	mg/l			
Bicarbonate	mg/l			
Ammenia-Nitrege	n mg/l			
Nitregen-Nitrat	e mg/l	< 0.010	8.810	(0.010
Mitrogen-Mitrit	e mg/l			
Phenels	mg/l	0.004	(8.004	< 8.004
Chremium	mg/l	0.050	8.010	\$.016
Cadmium	mg/l	0.023	1.006	(0.003
Lead	mg/l	0.093	0.030	(0.010
Mapthalene	mg/l			

Time of Execution: 86/19/84 1840.3 edt Tue

Allen Park Clay Mine Ground Water Honztoning Data

Auditional Mater Quality Parameters

Well: 2-D Down Gradient

Date Sampled: 04-26-83 08-24-85

Parameter	Units		
Static	Feet	o00 74	7م. 00م
003	mg/l		116.
Iron	mg/l		2.20
Chloride	mg/l		170.
Sulfate	mg/l		1210.
Sp. Conductance	umhos/cm		2700.
Sp. Conductance	wmhes/cm		2600.
Sp. Conductance	umhes/cm		2500.
Sp. Conductance	umhas/cm		26 0 Ú.
pH 1			7.40
pH 2			7.40
E Hq			7.50
рН 4			7.60
TOC 1	mg/l		31.0
TOC 2	mg/1		14.0
TOJ 3	mg/l		27.4
TOC 4	mg/1		32.0
Calcium	mg/l		340.
Sodium	mg/l		120,
Magnessum	mg/l		230.
Bicarponate	mg/l		350.
Ammonia-Nitregen	mg/l		1.10
Nitrogen-Nitrate	mg/l		0.840
Nitrogen-Witrits	mg/l		(8.020
Phenols	mg/1		
Chromium	mg/1		(0.020
Cadmium	mg/l		
Lead	mg/1		0.440
Napthalesse	mg/l		

		•

Allen Park Clay Hine Ground Water Menisering Data Adoltional Water Guality Parameters

Mell: 2-D Down Gradient

	Date Sampled.	64-17-84
Parameter	Unjis	
Static	Feet	580.97
COL	my/1	110.

 Iren
 mg/l
 3-38

 Chleride
 mg/l
 170.

Sulfate mg/1 2600.

Sp. Cenductance umhes/cm 2600.

Sp Conductance umnes/in

Sp Conductance umnes/in

Sp Canductanta wahes/ca

pri 1 7.60

pH 2

рн 3

pH 4

TOC 1 mg/l 11.8

TDC 2 mg/1

TDC 3 mg/1"

TDC 4 mg/1

Calcium mg/l 200.

Sediem mg/l 118.

Magnesium mg/1 150.

Bicarbonate mg/1 326.

Ammonia-Mitregen my/) 6 636

Mitragen-Mitrate mg/1 (8.828

Nitregen-Hitrite mg/1 8.020

Phenels mg/l

Chremium mg/1 (0.828

Cadmium mg/l

Lead mg/l

Mapthalene mg/l

•		··	
			-

Ailen Park Clay Mine
Ground Water Munitoring Data
Additional Water Quality Parameters

Well: 5-D Up Gradient

Date 	Sampled:	08-10-81
Parameter	Units	
Static	fæet	645.69
COD	mg/1	3.80
Iran	mg/1	(0.030
Chloride	my/l	126.
Sulfate	mg/1	246.
Sp. Conductance	umhos/cm	1550.
Sp Conquetance	umhos/cm	
Sp Conductance	umhos/cm	
Sp Conductance	umhos/cm	
pri 1		9,60
p# 2		
рН 3		
рН 4		
TOC 1	mg/l	9.00
TOC 2	mg/l	
Tau 3	Л _Ш . 4	
TOC 4	mg/l	
Calcium	mg/l	10.0
Sodium	mg/l	100.
Magnesium	mg/1	160.
Bicarbonate	mg/l	675.
Ammonia-Nitragen	mg/l	0.300
Nitrogen-Mittate	mg/l	(0.002
Witrogen-Witrits	mg/l	(0.100
Phenols	mg/1	0.021
Chromium	mg/l	(0.010
Cadmium	mg/1	(0.020
Lead	mg/1	0.850
Mapthalene	mq/l	

Time of Execution: 06/19/84 1840.3 edt Tue

		••	•	
	•			

Allen Park Clay Mine

Greenu Mater Menitering Data

Additional Water Quality Parameters

Well: 5-D Up Gradient

. D	ate Sampled:	05-06-82	07-14-82	10-26-6.1
Parameter	Units			
Static	Feet	605.12	605.45	ბ≬4. Ы4
COD	mg/l			
Iren	mg/l	1.78	1.20	0.88u
Chloride	mg/1	140.	150.	140.
Sulfate	Mg/1	190.	200	76.0
Sp. Conductan	ce umhos/cm	2160.	199ú .	1785.
Sp. Conductan	ce umhos/cm	2109.	1918.	180 u .
Sp. Conductan	ce umhos/cm	2121.	1937.	1791
Sp. Conductan	ce umhos/Lm	2100.	1954.	1ರಂಭ.
ph 1		7.32	7.44	10.2
pH 2		7.28	7.50	10.2
pH 3		7.31	7.67	16.2
рН 4		7.32	7.60	10.2
TOC 1	mg/l	6.0ē	21.0	21.0
100 2	mg/l	5.00	18.0	20.0
100 3	ny (1	5.00	13.0	9. 0 u
TOC 4	mg/l	6.81	20.0	33.0
Calcium	mg/1			a.
Sodium	mg/l	85.0	86.0	180.
hagnesium	mg/l			
Bicarbonate	mg/l			
Ammonia-Nitro	gen mg/l			
Nitrogen-Nitr	ate mg/l	0.018	0.250	(6.010
Mitrogen-Nati	rite my/l			
Phenels	mg/l	(8.004	(8.004	(8,004
Chronzum	Ag/l	(0,005	6.016	6.019
Cadmium	mg/l	0.006	(8.003	(0.003
Lead	mg/l	0.010	(0.918	8 .691
Mapthalene	mg/l			

Time of Execution: 06/19/84 1940.3 ed: Tue

			•	

Allen Park Clay Hine Ground Water Monitoring Data Additional Water Quality Parameters Well: 5-D Up Gradient

Date Sampled: 04-26-83 08-24-63

,			
Parameter	Units		
Static	Feet	604.24	605.44
COD	mg/l		27.0
Iren	mg/l		1.70
Chlerice	mg/1		1 - 0 .
Sulfate	mg (1		1 9 8
Sp. Conductance	umhes/cm		1000.
Sp. Conductance	umhos/cm		1600.
Sp. Conductance	umhos/cm		160Ú.
Sp. Conductance	umhas/cm		1600.
pH 1			8.00
pm 2			8.00
pm 3			80
рн 4			ê.0£
FGC 1	mg/l		7,46
TOC 2	mg/1		11.6
f01 3	eg/1		9.01
TOC 4	mg/1		8.00
Calcium	mg/1		38.0
Sodium	my/l		110.
Magnesium	mg/1		240.
Bicarbenate	mg/l		600.
Ammonia-Witrogen	mg/l		9.830
Nitrogen-Hitrate	mg/1		0.020
Nitrogen-Nitrite	mg/1		(0.020
Phenols	mg/l		
Chremium	mg/l		(0.020
Cadmium	mg/l		
Fead	mg/l		0.100
Mapthalene	my/l		

	1 18	••		
			•	
		4		
				•

Allen Park Clay Mine

Graund Mater Munituring Data

Additional Mater Quality Parameters

Well: 5-D Up Gracient

₽a1e 	Sampled.	04-17-84
Parameter	Unite	
Static	i`@@1	603.93
COL	mg/l	(4.80
Iren	mg/1	0.118
Chleride	mg/1	150.
Sulfate	mg/l	386
Sp. Cenductance	⊌mhes/i m	1700
Sp Conductance	UMI-65/LA	
Sp Conductance	umtob/cm	
Sp. Conductance	₩MD#3/CA	
рн 1		9.36
pH 2		
рН 3		
při 4		
TOC 1	mg/1	3.60
TOC 2	m y/1	
T00 3	m , / 1	
TOL 4	mg/l	
Calcien	my/l	11.6
500188	mg/1	118.
Magnestum	mq/l	160.
Bicarbenate	mg/1	450.
Ammen 14-M1 trege	n mg/l	8.600
Mitregen-Wifrat	e mg/l	(0.020
Mitragen-Hitrit	e mg/l	(8.020
Phenols	mg/l	
Chrenium	mg/l	(0.828
Cadmium	my/1	
Lead	sq/1	
Mapthalene	mg/l	

Time of Execution: 86/15/64 8933 0 adt Fr

	140	 **
·		

Allen Park Clay Mine Ground Water Monitoring Data Additional Water Quality Farameters

Date	Sempleo:	06-10-81
Parameter	Units	
Static	Feet	5-1.61
cor	mg/1	1.90
Iron	mg/l	6.030
Chloride	mg/1	150.
Suifate	ag/l	1300.
Sp. Conductance	umhos/cm	2250.
Sp. Cenductance	umhos/cm	
Sp Conductance	umnes/cm	
Sp Canductance	umhos/cm	
pm I		10.0
pH 2		
рн З		
pri 4		
TOC 1	mg/1	7.88
TBC 2	mg/1	
100 3	mg/1	
TOC 4	mg/l	
Calcium	mg/l	378.
Sodlum	mg/l	120
Magnesium	mg/l	24.6
bicarponate	ag/l	0.0000
Ammonia-Nitrege	n mg/l	6.759
Mitragen-Mitrat	e mg/l	6.100
Mitregen-Nitrit	e mg/l	0.002
Phenals	mg/l	0.023
Chramium	mg/l	0.018
Eadmium	mg/l	0.028
Lead	my/l	0.050
Napthalene	mg/l	

Allen Park Clay Mine Ground Water Monitoring Data

Additional Water Quality Parameters

041€	Sampled:	05-06-62	07-14-82	10-26-83

~~ ~ ·				
Parameter	Units			
Static	Feet	564.60	583 . O a	58 0.35
COD	mg/l	200.	160.	260.
Iren	mg/1	3.30	20.8	3.40
Chloride	mg/1		160.	146.
Sulfate	mg/l	850.	1000.	ÐBÚ.
Sp. Conductance	umhos/cm	1800.	26 04.	2435.
Sp. Conductance	umhas/cm			
Sp. Conductance	umhos/cm			
Sp. Conductance	umhes/cm			
рн 1		9.8ú	100	10.0
рН 2				
рН 3				
pH 4				
TOC 1	mg/l	₽5.8	31.0	49.0
TOC 2	mg/1			
TGC 3	mg/1			
TOC 4	mg/l			
Calcium	mg/l	278.		
Sodium	mg/l			26Û.
Hagnesium	mg/l	48.8		
Bicarbonate	mg/l	39.0		
Ammonia-Nitrage	n mg/l			0.630
Nitragen-Nitrat	e mg/l			0.080
Nitregen-Witrit	e mg/l			0.020
Phenels	mg/l	•		
Chromium	ag/l	0.020		
Cadmium	eg/l			
Lead	mg/1			0.449
Napthalene	mg/l			

••					
					:
					•
				•	
					,
					,
					•

Allen Park Clay Mine
Ground Water Monitoring Data
Additional Water Quality Parameters

Date	Sampled:	08-24-83
Parameter	Units	
Static	Feet	592.05
COD	mg/l	160.
fren	mg/l	14.8
Chloride	mg/l	180.
Sulfare	mg/l	1150.
Sp. Conductance	umhos/cm	2200.
Sp. Conductance	umhos/cm	2200.
Sp. Conductance	#mhos/cm	2200.
Sp. Conductance	wmhes/cm	2280.
pri 1		10.6
pH 2		10.8
рН З	·	18.8
рН 4		18.8
TOC 1	mg/l	49.0
TOC 2	mg/1	28.9
75C 3	រាម៉ូននិ	42.6
TOC 4	mg/1	21.0
Calcium	mg/l	458.
Sedium	mg/l	150.
Hagnesium	mg/l	18.0
Bicarbonate	mg/l	40.8
Amman 1a-N1 tregen	mg/l	0.940
Natragen-Natrate	mg/l	9.040
Mitreden-Mitrite	my/l	(0.020
Phenols	mg/1	
Chromium	mg/1	(0.026
Cadmium	mg/l	
Lead	mg/l	1 - 80
Napthalene	mg/l	

•				
				:
		•		

Allen Park Clay Mine:

Greend Water Menitering Bata

Additional Water Quality Parameters

Bate Sampled . 84-17-84						
Parameter	Units					
Static	F@@1	592.84				
COD	my/1	130.				
Iren	ny /1	0.530				
Chloride	eq/l	1 c 8 .				
Sulfate	Ay/l	2500.				
Sp. Cendertance	emhes/cm	2400.				
Sp. Canductance	umhes/ca					
Sp. Conductance	umlies/CR					
Sp. Conductance	BMHES/CM					
pH 1		9.9ú				
p# 2						
pH 3						
pH 4						
TOC 1	mg / 1	35.0				
100 2	mg/1					
T00 3	ng ≅l					
TOC 4	mg/l					
Calcium	A4/1	268.				
Sedium	mg/l	118.				
Magnesium	mq/1	15.0				
Bicarbenate	ng/1	6.0006				
Amenia-Mitrege	n mg/l	8.900				
Hitrogen-Hitrat	e my/l	(0.020				
Mitragen-Witrit	e mg/l	0.020				
Phenels	mg/l					
Chrenium	mg/1	(0.828				
Cadmium	mg/l					
Lead	mg/1					
Napthalene	mg/l					

			:

Ailen Park Clay Mine Ground Water Monitoring Data Additional Water Quality Parameters

Parameter	Un116	
Static	Feet	601.01
COD	mg/1	7.00
Iron	mg/l	0.240
Chloride	mg/l	150.
Sulfate	my/l	2100.
Sp. Conductance	umhos/cm	3000.
Sp. Conductance	umhos/cm	
Sp. Conductance	umhos/cm	
Sp. Conductance	umhas/cm	
pH 1		7.80
pH 2		
рн 3		
рН 4		
TOC 1	mg/l	7.80
TOC 2	mg/l	
TGC 3	mg/l	
TOC 4	mg/l	
Calcium	mg/l	370.
Scdiem	mg/1	98.6
Magnesium	mg/l	200.
Bicarbenste	mg/l	225.
Ammen 13-M1 troge	n mg/l	0.500
Nitrogen-Nitrat	e my/l	(0.189
Witrogen-Witrit	e my/l	0.002
Phenels	mg/l	0.809
Chromium	mg/l	0.018
Cadmium	mg/l	0.028
Lead	my/1	0.050
Mapthalene	mg/l	

		:
		;
	·	